What is Data Warehouse? (1)

- A data warehouse is a repository of information collected from multiple sources, stored under a unified schema, and that usually resides at a single site
- A data warehouse is a semantically consistent data store that serves as a physical implementation of a decision support data model and stores the information on which an enterprise need to make strategic decisions

What is Data Warehouse? (2)

- Data warehouses provide on-line analytical processing (OLAP) tools for the interactive analysis of multidimensional data of varied granularities, which facilitate effective data generalization and data mining
- Many other data mining functions, such as association, classification, prediction, and clustering, can be integrated with OLAP operations to enhance interactive mining of knowledge at multiple levels of abstraction

What is Data Warehouse? (3)

- A decision support database that is maintained separately from the organization's operational database
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process [Inm96]."—W. H. Inmon

Data Warehouse Framework

Figure 1.7 Typical framework of a data warehouse for AllElectronics

Data Warehouse is Subject-Oriented

- Organized around major subjects, such as customer, product, sales, etc.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse is Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.

Data Warehouse is *Time Variant*

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly

Data Warehouse is *Nonvolatile*

- A physically separate store of data transformed from the operational environment
- Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs. OLAP

Feature	OLTP	OLAP
Characteristic	operational processing	informational processing
Orientation	transaction	analysis
User	clerk, DBA, database professional	knowledge worker (e.g., manager, executive, analyst)
Function	day-to-day operations	long-term informational requirements,
		decision support
DB design	ER based, application-oriented	star/snowflake, subject-oriented
Data	current; guaranteed up-to-date	historical; accuracy maintained over time
Summarization	primitive, highly detailed	summarized, consolidated
View	detailed, flat relational	summarized, multidimensional
Unit of work	short, simple transaction	complex query
Access	read/write	mostly read
Focus	data in	information out
Operations	index/hash on primary key	lots of scans
Number of records accessed	tens	millions
Number of users	thousands	hundreds
DB size	100 MB to GB	100 GB to TB
Priority	high performance, high availability	high flexibility, end-user autonomy
Metric	transaction throughput	query throughput, response time

 Table 3.1 Comparison between OLTP and OLAP

Why Separate is Data Warehouse Needed? (1)

 Why not perform on-line analytical processing directly on operational databases instead of spending additional time and resources to construct a separate data warehouse?

Why Separate is Data Warehouse Needed? (2)

- High performance for both systems
 - DBMS— tuned for OLTP: searching for particular records, indexing, hashing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation (summarization and aggregation)

Topics

- Definition of data warehouse
- Multidimensional data model
- Data warehouse architecture
- From data warehousing to data mining

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model
- This model views data in the form of a data cube
- A data cube allows data to be modeled and viewed in multiple dimensions

From Tables and Spreadsheets to Data Cubes (1)

- A data cube is defined by facts and dimensions
 - Facts are data which data warehouse focus on
 - Fact tables contain numeric measures (such as dollars_sold) and keys to each of the related dimension tables
 - Dimensions are perspectives with respect to fact
 - Dimension tables describe the dimension with attributes. For example, item (item_name, brand, type), or time(day, week, month, quarter, year)

customer

cust_ID	name	address	age	income	credit_info	category	
C1	Smith, Sandy	1223 Lake Ave., Chicago, IL	31	\$78000	1	3	

item

<u>item_ID</u> n	name	brand	category	type	price	place_made	supplier	cost
	hi-res-TV	Toshiba	high resolution	TV	\$988.00	Japan	NikoX	\$600.00
	Laptop	Dell	laptop	computer	\$1369.00	USA	Dell	\$983.00

employee

empl_ID	name	category	group	salary	commission
E55	Jones, Jane	home entertainment	manager	\$118,000	2%

branch

branch_ID	пате	address
B1	City Square	396 Michigan Ave., Chicago, IL
		• • •

purchases

trans_!D	cust_ID	empl_!D	date	time	method_paid	amount
T100	C1	E55	03/21/2005	15:45	Visa	\$1357.00

items_sold

trans_ID	item_ID	qty
T100	13	1
T100	I8	2

works_at

empl_!D	branch_ID
E55	B 1

From Tables and Spreadsheets to Data Cubes (2)

	<i>location</i> = "Vancouver"									
time (quarter)	item (type)									
	home	computer	phone	security						
dimensions	entertainment									
Q1	605	825	14	400						
Q2	680	952	31	512						
Q3	812	1023	30	501						
Q4	927	1038	38	580						

Facts (numerical measures)

Table 3.2 A 2-D view of sales data for *AllElectronics* according to the dimensions *time* and *item*, where the sales are from branches located in the city of Vancouver. The measure displayed is *dollar_sold* (in thousands).

From Tables and Spreadsheets to Data Cubes (3)

	location = "Chicago" location = "New York"					location = "Toronto"			<i>location</i> = "Vancouver"							
t	item				item			item			item					
i m e	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.
Q1 Q2 Q3 Q4	854 943 1032 1129	882 890 924 992	89 64 59 63	623 698 789 870	1087 1130 1034 1142	968 1024 1048 1091	38 41 45 54	872 925 1002 984	818 894 940 978	746 769 795 864	43 52 58 59	591 682 728 784	605 680 812 927	825 952 1023 1038	14 31 30 38	400 512 501 580

Table 3.3 A 3-D view of sales data for *AllElectronics* according to the dimensions *time*, *item*, and *location*. The measure displayed is *dollar_sold* (in thousands).

From Tables and Spreadsheets to Data Cubes (4)

Figure 3.1 A 3-D data cube representation of the data in Table 3.3, according to the dimensions *time, item*, and *location*. The measure displayed is *dollar_sold* (in thousands).

From Tables and Spreadsheets to Data Cubes (5)

Figure 3.2 A 4-D data cube representation, according to the dimensions *time, item, location,* and *supplier*. The measure displayed is *dollar_sold* (in thousands).

Cuboid

- A data cube is a lattice of cuboids
- The total number of cuboids
- The apex cuboid
- The base cuboid

Figure 3.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by. The base cuboid contains the three dimensions city, item, and year.

The Curse of Dimensionality

- How many cuboids are there in a n-dimensional data cube?
- How many cuboids are there in a n-dimensional data cube and each dimension (i) has the number of level, (L_i)?

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Figure 3.4 Star schema of a data warehouse for sales.

Figure 3.4 Snowflake schema of a data warehouse for sales.

Figure 3.5 Fact constellation schema of a data warehouse for sales and shipping.