
9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 1/17

Project Exercise – Feature Engineering
Feature engineering is the act of making your data easier for a machine learning model to understand. You are
not adding anything new but are reshaping and curating the existing data to make the existing patterns more
apparent. Feature engineering is the process of using domain knowledge of the data to create features that
make machine learning algorithms work better than they would on a simple raw encoding.

To examine this, you will use the King County, Washington (which includes Seattle), housing dataset (CC0
license). You will try to predict the price of a house based on simple information like the location, total square
footage, and number of bedrooms. You may imagine a business scenario where you are running a real estate
brokerage and wish to predict for your customers the cost that a house will sell for if listed.

First, load the dataset and take a look at its basic properties.

In [1]: # Load the dataset

import pandas as pd

import boto3

df = pd.read_csv("kc_house_data_2.csv")

df.head()

Out[1]:
id date price bedrooms bathrooms sqft_living sqft_lot floors w

0 7129300520 20141013T000000 221900.0 3 1.00 1180 5650 1.0

1 6414100192 20141209T000000 538000.0 3 2.25 2570 7242 2.0

2 5631500400 20150225T000000 180000.0 2 1.00 770 10000 1.0

3 2487200875 20141209T000000 604000.0 4 3.00 1960 5000 1.0

4 1954400510 20150218T000000 510000.0 3 2.00 1680 8080 1.0

5 rows × 21 columns

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 2/17

This dataset has 21 columns:

id - Unique id number
date - Date of the house sale
price - Price the house sold for
bedrooms - Number of bedrooms
bathrooms - Number of bathrooms
sqft_living - Number of square feet of the living space
sqft_lot - Number of square feet of the lot
floors - Number of floors in the house
waterfront - Whether the home is on the waterfront
view - Number of lot sides with a view
condition - Condition of the house
grade - Classification by construction quality
sqft_above - Number of square feet above ground
sqft_basement - Number of square feet below ground
yr_built - Year built
yr_renovated - Year renovated
zipcode - ZIP code
lat - Latitude
long - Longitude
sqft_living15 - Number of square feet of living space in 2015 (can differ from sqft_living in the case

of recent renovations)
sqrt_lot15 - Nnumber of square feet of lot space in 2015 (can differ from sqft_lot in the case of recent

renovations)

This dataset is rich and provides a fantastic playground for the exploration of feature engineering. This exercise
will focus on a small number of columns. If you are interested, you could return to this dataset later to practice
feature engineering on the remaining columns.

A baseline model
Now, train a baseline model.

People often look at square footage first when evaluating a home. You will do the same in the oflorur model and
ask how well can the cost of the house be approximated based on this number alone. You will train a simple
linear learner model (documentation (https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html)).
You will compare to this after finishing the feature engineering.

Note: This takes a few minutes to run, so feel free to read onward while you are waiting.

https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 3/17

In [2]: import sagemaker

import numpy as np

from sklearn.model_selection import train_test_split

import time

t1 = time.time()

Split training, validation, and test

ys = np.array(df['price']).astype("float32")

xs = np.array(df['sqft_living']).astype("float32").reshape(-1,1)

np.random.seed(8675309)

train_features, test_features, train_labels, test_labels = train_test_split(xs
, ys, test_size=0.2)

val_features, test_features, val_labels, test_labels = train_test_split(test_f
eatures, test_labels, test_size=0.5)

Train model

linear_model = sagemaker.LinearLearner(role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m4.xlarge',

 predictor_type='regressor')

train_records = linear_model.record_set(train_features, train_labels, channel=
'train')

val_records = linear_model.record_set(val_features, val_labels, channel='valid
ation')

test_records = linear_model.record_set(test_features, test_labels, channel='te
st')

linear_model.fit([train_records, val_records, test_records], logs=False)

sagemaker.analytics.TrainingJobAnalytics(linear_model._current_job_name, metri
c_names = ['test:mse', 'test:absolute_loss']).dataframe()

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 4/17

If you examine the quality metrics, you will see that the absolute loss is about . This tells us that
the model is able to predict within an average of $175k of the true price. For a model based upon a single
variable, this is not bad. Let's try to do some feature engineering to improve on it.

Throughout the following work, you will constantly be adding to a dataframe called encoded . You will start by
populating encoded with just the square footage you used previously.

$175, 000.00

In [3]: encoded = df[['sqft_living']].copy()

Categorical variables
Let's start by including some categorical variables, beginning with simple binary variables.

The dataset has the waterfront feature, which is a binary variable. We should change the encoding from
'Y' and 'N' to 1 and 0 . This can be done using the map function (documentation

(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html)) provided by Pandas. It
expects either a function to apply to that column or a dictionary to look up the correct transformation.

Question 1 - Binary categorical
Write code to transform the waterfront variable into binary values. The skeleton has been
provided below.

Defaulting to the only supported framework/algorithm version: 1. Ignoring fra
mework/algorithm version: 1.

Defaulting to the only supported framework/algorithm version: 1. Ignoring fra
mework/algorithm version: 1.

2022-09-19 20:28:49 Starting - Starting the training job.......

2022-09-19 20:29:28 Starting - Preparing the instances for trainin
g..............

2022-09-19 20:30:41 Downloading - Downloading input data...

2022-09-19 20:31:01 Training - Downloading the training imag
e........................

2022-09-19 20:33:07 Training - Training image download completed. Training in
progress....

2022-09-19 20:33:28 Uploading - Uploading generated training model..

2022-09-19 20:33:44 Completed - Training job completed

Out[2]:
timestamp metric_name value

0 0.0 test:mse 6.960262e+10

1 0.0 test:absolute_loss 1.754493e+05

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 5/17

In [4]: ## SOLUTION 1 ##

encoded['waterfront'] = df['waterfront'].map({'Y':1, 'N':0})

You can also encode many class categorical variables. Look at column condition , which gives a score of the
quality of the house. Looking into the data source (https://info.kingcounty.gov/assessor/esales/Glossary.aspx?
type=r#b) shows that the condition can be thought of as an ordinal categorical variable, so it makes sense to
encode it with the order.

Question 2 - Ordinal categorical
Using the same method as in question 1, encode the ordinal categorical variable condition
into the numerical range of 1 through 5.

In [5]: ## SOLUTION 2 ##

encoded['condition'] = df['condition'].map({'Poor':1, 'Fair':2, 'Average':3,
'Good':4, 'Very Good':5})

A slightly more complex categorical variable is ZIP code. If you have worked with geospatial data, you may know
that the full ZIP code is often too fine-grained to use as a feature on its own. However, there are only unique
ZIP codes in this dataset, so we may use them.

However, we do not want to use unencoded ZIP codes. There is no reason that a larger ZIP code should
correspond to a higher or lower price, but it is likely that particular ZIP codes would. This is the perfect case to
perform one-hot encoding. You can use the get_dummies function (documentation
(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html)) from Pandas to do this.

Question 3 - Nominal categorical
Using the Pandas get_dummies function, add columns to one-hot encode the ZIP code and
add it to the dataset.

70

In [6]: ## Solution 3 ##

encoded = pd.concat([encoded, pd.get_dummies(df['zipcode'])], axis=1)

https://info.kingcounty.gov/assessor/esales/Glossary.aspx?type=r#b
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 6/17

In this way, you may freely encode whatever categorical variables you wish. Be aware that for categorical
variables with many categories, something will need to be done to reduce the number of columns created.

One additional technique, which is simple but can be highly successful, involves turning the ZIP code into a
single numerical column by creating a single feature that is the average price of a home in that ZIP code. This is
called target encoding.

To do this, use groupby (documentation (https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.groupby.html)) and mean (documentation
(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html)) to first group the
rows of the DataFrame by ZIP code and then take the mean of each group. The resulting object can be mapped
over the ZIP code column to encode the feature.

Question 4 - Nominal categorical II
Complete the following code snippet to provide a target encoding for the ZIP code.

In []: ## Solution 4 ##

means = df.groupby('zipcode')['price'].mean()

encoded['zip_mean'] = df['zipcode'].map(means)

Normally, you only either one-hot encode or target encode. For this exercise, leave both in. In practice, you
should try both, see which one performs better on a validation set, and then use that method.

Scaling
Take a look at the dataset. Print a summary of the encoded dataset using describe (documentation
(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html)).

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 7/17

In [7]: encoded.describe()

One column ranges from to (sqft_living), another column ranges from to (condition),
columns are all either or (one-hot encoded ZIP code), and then the final column ranges from a few hundred
thousand to a couple million (zip_mean).

In a linear model, these will not be on equal footing. The sqft_living column will be approximately
times easier for the model to find a pattern in than the other columns. To solve this, you often want to scale
features to a standardized range. In this case, you will scale sqft_living to lie within and .

Question 5 - Feature scaling
Fill in the code skeleton below to scale the column of the DataFrame to be between and .

290 13540 1 5 71

0 1

13000

0 1

0 1

In [8]: ## Solution 5 ##

sqft_min = encoded['sqft_living'].min()

sqft_max = encoded['sqft_living'].max()

encoded['sqft_living'] = encoded['sqft_living'].map(lambda x : (x-sqft_min)/(s
qft_max - sqft_min))

cond_min = encoded['condition'].min()

cond_max = encoded['condition'].max()

encoded['condition'] = encoded['condition'].map(lambda x : (x-cond_min)/(cond_
max - cond_min))

Out[7]:
sqft_living waterfront condition 98001 98002 98003

count 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 216

mean 2079.899736 0.007542 3.409430 0.016749 0.009207 0.012955

std 918.440897 0.086517 0.650743 0.128333 0.095515 0.113084

min 290.000000 0.000000 1.000000 0.000000 0.000000 0.000000

25% 1427.000000 0.000000 3.000000 0.000000 0.000000 0.000000

50% 1910.000000 0.000000 3.000000 0.000000 0.000000 0.000000

75% 2550.000000 0.000000 4.000000 0.000000 0.000000 0.000000

max 13540.000000 1.000000 5.000000 1.000000 1.000000 1.000000

8 rows × 73 columns

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 8/17

Comparison with baseline
With this complete, you have now practiced some fundamentals of feature engineering. Take a look at how your
new model compares with the baseline.

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 9/17

In [9]: # Split training, validation, and test

ys = np.array(df['price']).astype("float32")

xs = np.array(encoded).astype("float32")

np.random.seed(8675309)

train_features, test_features, train_labels, test_labels = train_test_split(xs
, ys, test_size=0.2)

val_features, test_features, val_labels, test_labels = train_test_split(test_f
eatures, test_labels, test_size=0.5)

Train model

linear_model = sagemaker.LinearLearner(role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m4.xlarge',

 predictor_type='regressor')

train_records = linear_model.record_set(train_features, train_labels, channel=
'train')

val_records = linear_model.record_set(val_features, val_labels, channel='valid
ation')

test_records = linear_model.record_set(test_features, test_labels, channel='te
st')

linear_model.fit([train_records, val_records, test_records], logs=False)

sagemaker.analytics.TrainingJobAnalytics(linear_model._current_job_name, metri
c_names = ['test:mse', 'test:absolute_loss']).dataframe()

Defaulting to the only supported framework/algorithm version: 1. Ignoring fra
mework/algorithm version: 1.

Defaulting to the only supported framework/algorithm version: 1. Ignoring fra
mework/algorithm version: 1.

2022-09-19 22:25:39 Starting - Starting the training job.......

2022-09-19 22:26:17 Starting - Preparing the instances for trainin
g...............

2022-09-19 22:27:37 Downloading - Downloading input data....

2022-09-19 22:28:03 Training - Downloading the training imag
e.......................

2022-09-19 22:30:03 Training - Training image download completed. Training in
progress.....

2022-09-19 22:30:29 Uploading - Uploading generated training model..

2022-09-19 22:30:45 Completed - Training job completed

Out[9]:
timestamp metric_name value

0 0.0 test:mse 3.467769e+10

1 0.0 test:absolute_loss 1.067952e+05

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 10/17

This is improved! The error has been reduced from about to , which is about a improvement
in predictions.

Diving deeply into feature engineering is often one of the most powerful steps in the development of a model.
Whatever human understanding you can distill into well-engineered features is one less thing that your model
needs to learn.

While we omitted exploratory data analysis here, doing so would quickly reveal there are many subtle
relationships that can be modeled, such as the one graphed below for price vs. lat . Can you guess the
latitude of downtown Seattle from this plot?

$175k $107k 38%

In [10]: import matplotlib.pyplot as plt

%matplotlib inline

plt.ylim([0,1000000])

plt.scatter(df['lat'],df['price'],alpha=0.05)

plt.show()

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 11/17

Question 6 - Additional feature engineering (Optional)
Continue performing feature engineering on this dataset. Here is a short list of things to try:

Perform binning or polynomial feature engineering on the latitude.
Try using only the first three digits of the ZIP code to see if fewer one-hot-encoded variables
helps.
Include the other numerical features.
Test the effect of different scaling methods.
Use the renovation year to create a has_been_renovated variable. (What would go wrong
if you used it without encoding it properly?)
Use the sale date.

In [11]: ## Possible solution 6 ##

encoded['bedrooms'] = df['bedrooms']

encoded['bathrooms'] = df['bathrooms']

encoded['sqft_lot'] = df['sqft_lot']

encoded['floors'] = df['floors']

encoded['view'] = df['view']

encoded['grade'] = df['grade']

encoded['sqft_above'] = df['sqft_above']

encoded['sqft_basement'] = df['sqft_basement']

encoded['bathrooms'] = df['bathrooms']

encoded['renovated'] = df['yr_renovated'].map(lambda x: 1 if x > 0 else 0)

encoded['lat'] = df['lat']

encoded['long'] = df['long']

encoded['lr1'] = df['lat'].map(lambda x: 1 if x <= 47.3 else 0)

encoded['lr2'] = df['lat'].map(lambda x: 1 if x > 47.3 and x <= 47.4 else 0)

encoded['lr3'] = df['lat'].map(lambda x: 1 if x > 47.4 and x <= 47.5 else 0)

encoded['lr4'] = df['lat'].map(lambda x: 1 if x > 47.5 and x <= 47.6 else 0)

encoded['lr5'] = df['lat'].map(lambda x: 1 if x > 47.6 and x <= 47.7 else 0)

encoded['lr6'] = df['lat'].map(lambda x: 1 if x > 47.7 else 0)

encoded = (encoded - encoded.min())/(encoded.max() - encoded.min())

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 12/17

In [12]: encoded.describe()

Out[12]:
sqft_living waterfront condition 98001 98002 98003

count 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 21613.000000 216

mean 0.135087 0.007542 0.602357 0.016749 0.009207 0.012955

std 0.069316 0.086517 0.162686 0.128333 0.095515 0.113084

min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 0.085811 0.000000 0.500000 0.000000 0.000000 0.000000

50% 0.122264 0.000000 0.500000 0.000000 0.000000 0.000000

75% 0.170566 0.000000 0.750000 0.000000 0.000000 0.000000

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

8 rows × 90 columns

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 13/17

In []: # Split training, validation, and test

ys = np.array(df['price']).astype("float32")

xs = np.array(encoded).astype("float32")

np.random.seed(8675309)

train_features, test_features, train_labels, test_labels = train_test_split(xs
, ys, test_size=0.2)

val_features, test_features, val_labels, test_labels = train_test_split(test_f
eatures, test_labels, test_size=0.5)

Train model

linear_model = sagemaker.LinearLearner(role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m4.xlarge',

 predictor_type='regressor')

train_records = linear_model.record_set(train_features, train_labels, channel=
'train')

val_records = linear_model.record_set(val_features, val_labels, channel='valid
ation')

test_records = linear_model.record_set(test_features, test_labels, channel='te
st')

linear_model.fit([train_records, val_records, test_records], logs=False)

sagemaker.analytics.TrainingJobAnalytics(linear_model._current_job_name, metri
c_names = ['test:mse', 'test:absolute_loss']).dataframe()

Defaulting to the only supported framework/algorithm version: 1. Ignoring fra
mework/algorithm version: 1.

Defaulting to the only supported framework/algorithm version: 1. Ignoring fra
mework/algorithm version: 1.

2022-09-19 22:30:56 Starting - Starting the training job.....

2022-09-19 22:31:24 Starting - Preparing the instances for trainin
g..............

2022-09-19 22:32:41 Downloading - Downloading input data......

2022-09-19 22:33:12 Training - Downloading the training imag
e....................

2022-09-19 22:34:58 Training - Training image download completed. Training in
progress.....

2022-09-19 22:35:23 Uploading - Uploading generated training model.

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 14/17

Hyperparameter optimization
Now that you have prepared and trained the dataset, it is time to tune the model. What you tune for the model
are the knobs or algorithm settings called hyperparameters. Hyperparameters can dramatically affect the
performance of the trained models. For example, the linear learner algorithm has dozens of hyperparameters,
and you must pick the right values for those hyperparameters to achieve the desired model training results.
Selecting the hyperparameter setting that leads to the best result depends on the dataset as well. It is almost
impossible to pick the best hyperparameter setting without searching for it, and a good search algorithm can
search for the best hyperparameter setting in an automated and effective way.

You will use Amazon SageMaker hyperparameter tuning to automate the searching process effectively.
Specifically, you will specify a range, or a list of possible values in the case of categorical hyperparameters, for
each of the hyperparameters that we plan to tune. Amazon SageMaker hyperparameter tuning will automatically
launch multiple training jobs with different hyperparameter settings, evaluate results of those training jobs based
on a predefined "objective metric", and select the hyperparameter settings for future attempts based on previous
results. For each hyperparameter tuning job, you will give a budget (max number of training jobs), and tuning will
complete once that many training jobs have run.

You will use the Amazon SageMaker Python SDK again to set up and manage the hyperparameter tuning job.

You will tune two hyperparameters in this example:

learning_rate: The step size used by the optimizer for parameter updates
use_bias: Specifies whether the model should include a bias term, which is the intercept term in the linear
equation

In []: from sagemaker.parameter import (

 CategoricalParameter,

 ContinuousParameter,

 IntegerParameter,

 ParameterRange,

)

from sagemaker.amazon.hyperparameter import Hyperparameter

from sagemaker.tuner import HyperparameterTuner

import sagemaker

hyperparameter_ranges = {'learning_rate': ContinuousParameter(0.0001, 0.1, sca
ling_type='Logarithmic'),

 'use_bias': CategoricalParameter([True, False])}

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 15/17

Next, you'll specify the objective metric that you'd like to tune and its definition, which includes the regular
expression (regex) needed to extract that metric from the Amazon CloudWatch logs of the training job.

Because you are using the built-in linear learner algorithm, it emits two predefined metrics that you have used
before: test: mse and test: absolute_loss. You will elect to monitor test:mse. In this case, you only need to
specify the metric name and do not need to provide regex. If you bring your own algorithm, your algorithm emits
metrics by itself. In that case, you would need to add a metric definition object to define the format of those
metrics through regex, so that Amazon SageMaker knows how to extract those metrics from your CloudWatch
logs.

In []: objective_metric_name = 'test:mse'

objective_type = 'Minimize'

Now, create a HyperparameterTuner object, to which you will pass the following:

The Linear_model estimator created previously
The hyperparameter ranges
Objective metric name and definition with the objective type
Tuning resource configurations, such as number of training jobs to run in total and how many training jobs
can be run in parallel

In []: tuner = HyperparameterTuner(linear_model,

 objective_metric_name,

 hyperparameter_ranges,

 max_jobs=10,

 max_parallel_jobs=2,

 objective_type=objective_type)

Now you can launch a hyperparameter tuning job by calling the fit() function. After the hyperparameter
tuning job is created, you can go to the Amazon SageMaker console to track the progress of the hyperparameter
tuning job until it is completed.

In []: tuner.fit([train_records, val_records, test_records], include_cls_metadata=Fal
se)

Run a quick check of the hyperparameter tuning job status to make sure it started successfully.

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 16/17

In []: sagemaker_client = boto3.client('sagemaker')

job_name = tuner.latest_tuning_job.job_name

tuner_describe = sagemaker_client.describe_hyper_parameter_tuning_job(

 HyperParameterTuningJobName=job_name)['HyperParameterTuningJobStatus']

tuner_describe

Track hyperparameter tuning job progress
After you launch a tuning job, you can see its progress by calling the describe_tuning_job API. The output is
a JSON object that contains information about the current state of the tuning job. To see a detailed list of the
training jobs that the tuning job launched, call list_training_jobs_for_tuning_job .

In []: tuning_job_result = sagemaker_client.describe_hyper_parameter_tuning_job(Hyper
ParameterTuningJobName=job_name)

status = tuning_job_result['HyperParameterTuningJobStatus']

if status != 'Completed':

 print('Reminder: the tuning job has not been completed.')

job_count = tuning_job_result['TrainingJobStatusCounters']['Completed']

print("%d training jobs have completed" % job_count)

is_minimize = (tuning_job_result['HyperParameterTuningJobConfig']['HyperParame
terTuningJobObjective']['Type'] != 'Maximize')

objective_name = tuning_job_result['HyperParameterTuningJobConfig']['HyperPara
meterTuningJobObjective']['MetricName']

In []: from pprint import pprint

if tuning_job_result.get('BestTrainingJob',None):

 print("Best model found so far:")

 pprint(tuning_job_result['BestTrainingJob'])

else:

 print("No training jobs have reported results yet.")

Fetch all results as DataFrame
You can list hyperparameters and objective metrics of all training jobs and pick up the training job with the best
objective metric.

9/19/22, 4:37 PM PE-FE-HPO

file:///C:/Users/etienne_noumen/Downloads/PE-FE-HPO.html 17/17

In []: import pandas as pd

tuner = sagemaker.HyperparameterTuningJobAnalytics(job_name)

full_df = tuner.dataframe()

if len(full_df) > 0:

 df = full_df[full_df['FinalObjectiveValue'] > -float('inf')]

 if len(df) > 0:

 df = df.sort_values('FinalObjectiveValue', ascending=is_minimize)

 print("Number of training jobs with valid objective: %d" % len(df))

 print({"lowest":min(df['FinalObjectiveValue']),"highest": max(df['Fina
lObjectiveValue'])})

 pd.set_option('display.max_colwidth', -1) # Don't truncate TrainingJo
bName

 else:

 print("No training jobs have reported valid results yet.")

df

Conclusion
In this exercise, you examined a few tasks in feature engineering and hyperparameter optimization. First, you
saw how you can encode features that are otherwise inaccessible to the model (such as the categorical
features). In these circumstances, simple techniques like one-hot encoding or ordinal encoding can go a long
way. These techniques also allowed you to get more from the features you already had, such as with the latitude.
The encoding was already good in that case; however, the pattern was difficult for the model to use. Presenting
that variable in a way that makes the data available to the model is a key to the development of a high-
performing model.

