What is the Best Machine Learning Algorithms for Imbalanced Datasets

Machine Learning Algorithms and Imbalanced Datasets

AI Jobs and Career

And before we wrap up today's AI news, I wanted to share an exciting opportunity for those of you looking to advance your careers in the AI space. You know how rapidly the landscape is evolving, and finding the right fit can be a challenge. That's why I'm excited about Mercor – they're a platform specifically designed to connect top-tier AI talent with leading companies. Whether you're a data scientist, machine learning engineer, or something else entirely, Mercor can help you find your next big role. If you're ready to take the next step in your AI career, check them out through my referral link: https://work.mercor.com/?referralCode=82d5f4e3-e1a3-4064-963f-c197bb2c8db1. It's a fantastic resource, and I encourage you to explore the opportunities they have available.

Job TitleStatusPay
Full-Stack Engineer Strong match, Full-time $150K - $220K / year
Developer Experience and Productivity Engineer Pre-qualified, Full-time $160K - $300K / year
Software Engineer - Tooling & AI Workflows (Contract) Contract $90 / hour
DevOps Engineer (India) Full-time $20K - $50K / year
Senior Full-Stack Engineer Full-time $2.8K - $4K / week
Enterprise IT & Cloud Domain Expert - India Contract $20 - $30 / hour
Senior Software Engineer Contract $100 - $200 / hour
Senior Software Engineer Pre-qualified, Full-time $150K - $300K / year
Senior Full-Stack Engineer: Latin America Full-time $1.6K - $2.1K / week
Software Engineering Expert Contract $50 - $150 / hour
Generalist Video Annotators Contract $45 / hour
Generalist Writing Expert Contract $45 / hour
Editors, Fact Checkers, & Data Quality Reviewers Contract $50 - $60 / hour
Multilingual Expert Contract $54 / hour
Mathematics Expert (PhD) Contract $60 - $80 / hour
Software Engineer - India Contract $20 - $45 / hour
Physics Expert (PhD) Contract $60 - $80 / hour
Finance Expert Contract $150 / hour
Designers Contract $50 - $70 / hour
Chemistry Expert (PhD) Contract $60 - $80 / hour

What is the Best Machine Learning Algorithms for Imbalanced Datasets?

In machine learning, imbalanced datasets are those where one class heavily outnumbers the others. This can be due to the nature of the problem or simply because more data is available for one class than the others. Either way, imbalanced datasets can pose a challenge for machine learning algorithms. In this blog post, we’ll take a look at which machine learning algorithms are best suited for imbalanced datasets and why they tend to perform better than others.

 For example, in a binary classification problem, if there are 100 observations, and only 10 of them are positive (the rest are negatives), then we say that the dataset is imbalanced. The ratio of positive to negative cases is 1:10. 

What is the Best Machine Learning Algorithms for Imbalanced Datasets
What is the Best Machine Learning Algorithms for Imbalanced Datasets

There are a few reasons why some machine learning algorithms tend to perform better on imbalanced datasets than others. First, certain algorithms are designed to handle imbalanced datasets. Second, some algorithms are more robust to outliers, which can be more common in imbalanced datasets. And third, some algorithms are better able to learn from a limited amount of data, which can be an issue when one class is heavily outnumbered by the others.

Some of the best machine learning algorithms for imbalanced datasets include:

Support Vector Machines (SVMs),
Decision Trees,
Random Forests,
– Naive Bayes Classifiers,
k-Nearest Neighbors (kNN),

Of these, SVMs tend to be the most popular choice as they are specifically designed to handle imbalanced datasets. SVMs work by finding a hyperplane that maximizes the margin between the two classes. This helps to reduce overfitting and improve generalization. Decision trees and random forests are also popular choices as they are less sensitive to outliers than other algorithms such as linear regression. Naive Bayes classifiers are another good choice as they are able to learn from a limited amount of data. kNN is also a good choice as it is not sensitive to outliers and is able to learn from a limited amount of data. However, it can be computationally intensive for large datasets.

There are two main types of machine learning algorithms: supervised and unsupervised. Supervised algorithms tend to perform better on imbalanced datasets than unsupervised algorithms. In this blog post, we will discuss why this is so and look at some examples.

Supervised Algorithms
Supervised algorithms are those where the target variable is known. In other words, we have training data where the correct answers are already given. The algorithm then learns from this data and is able to generalize to new data. Some examples of supervised algorithms are regression and classification.

Unsupervised Algorithms
Unsupervised algorithms are those where the target variable is not known. With unsupervised algorithms, we only have input data, without any corresponding output labels. The algorithm has to learn from the data itself without any guidance. Some examples of unsupervised algorithms are clustering and dimensionality reduction.

Why Supervised Algorithms Perform Better on Imbalanced Datasets
The reason why supervised algorithms perform better on imbalanced datasets is because they can learn from the training data which cases are more important. With unsupervised algorithms, all data points are treated equally, regardless of whether they are in the minority or majority class.

For example, in a binary classification problem with an imbalanced dataset, let’s say that we want to predict whether a customer will default on their loan payment or not. We have a training dataset of 1000 customers, out of which only 100 (10%) have defaulted on their loan in the past.

If we use a supervised algorithm like logistic regression, the algorithm will learn from the training data that defaulting on a loan is rare (since only 10% of cases in the training data are Positive). This means that it will be more likely to predict correctly that a new customer will not default on their loan (since this is the majority class in the training data).
However, if we use an unsupervised algorithm like k-means clustering, all data points will be treated equally since there is no target variable to guide the algorithm. This means that it might incorrectly cluster together customers who have defaulted on their loans with those who haven’t since there is no guidance provided by a target variable.

Conclusion:
In conclusion, supervised machine learning algorithms tend to perform better on imbalanced datasets than unsupervised machine learning algorithms because they can learn from the training data which cases are more important. 

Some machine learning algorithms tend to perform better on highly imbalanced datasets because they are designed to deal with imbalance or because they can learn from both classes simultaneously. If you are working with a highly imbalanced dataset, then you should consider using one of these algorithms.

Thanks for reading!

How are machine learning techniques being used to address unstructured data challenges?

Machine learning techniques are being used to address unstructured data challenges in a number of ways:

  1. Natural language processing (NLP): NLP algorithms can be used to extract meaningful information from unstructured text data, such as emails, documents, and social media posts. NLP algorithms can be trained to classify text data, identify key terms and concepts, and extract structured data from unstructured text.
  2. Image recognition: Machine learning algorithms can be used to analyze and classify images, enabling the automatic identification and classification of objects, people, and other elements in images. This can be useful for tasks such as image tagging and search, as well as for applications such as security and surveillance.
  3. Audio and speech recognition: Machine learning algorithms can be used to analyze and classify audio data, enabling the automatic transcription and translation of spoken language. This can be useful for tasks such as speech-to-text transcription, as well as for applications such as call center automation and language translation.
  4. Video analysis: Machine learning algorithms can be used to analyze and classify video data, enabling the automatic detection and classification of objects, people, and other elements in video. This can be useful for tasks such as video tagging and search, as well as for applications such as security and surveillance.

Overall, machine learning techniques are being used in a wide range of applications to extract meaningful information from unstructured data, and to enable the automatic classification and analysis of data in a variety of formats.

How is AI and machine learning impacting application development today?

Artificial intelligence (AI) and machine learning are having a significant impact on application development today in a number of ways:

  1. Enabling new capabilities: AI and machine learning algorithms can be used to enable applications to perform tasks that would be difficult or impossible for humans to do. For example, AI-powered applications can be used to analyze and classify large amounts of data, or to automate complex decision-making processes.
  2. Improving performance: AI and machine learning algorithms can be used to optimize the performance of applications, making them faster, more efficient, and more accurate. For example, machine learning algorithms can be used to improve the accuracy of predictive models, or to optimize the performance of search algorithms.
  3. Streamlining development: AI and machine learning algorithms can be used to automate various aspects of application development, such as testing, debugging, and deployment. This can help to streamline the development process and reduce the time and resources needed to build and maintain applications.
  4. Enhancing user experiences: AI and machine learning algorithms can be used to enhance the user experience of applications, by providing personalized recommendations, recommendations, or by enabling applications to anticipate and respond to the needs and preferences of users.

Overall, AI and machine learning are having a significant impact on application development today, and they are likely to continue to shape the way applications are built and used in the future.

How will advancements in artificial intelligence and machine learning shape the future of work and society?

Advancements in artificial intelligence (AI) and machine learning are likely to shape the future of work and society in a number of ways. Some potential impacts include:

  1. Automation: AI and machine learning algorithms can be used to automate tasks that are currently performed by humans, such as data entry, customer service, and manufacturing. This could lead to changes in the types of jobs that are available and the skills that are in demand, as well as to increased productivity and efficiency.
  2. Job displacement: While automation may create new job opportunities, it could also lead to job displacement, particularly for workers in industries that are more susceptible to automation. This could lead to social and economic challenges, including unemployment and income inequality.
  3. Increased efficiency: AI and machine learning algorithms can be used to optimize and streamline business processes, leading to increased efficiency and productivity. This could lead to economic growth and innovation, and could also help to reduce costs for businesses and consumers.
  4. Enhanced decision-making: AI and machine learning algorithms can be used to analyze large amounts of data and make more informed and accurate decisions. This could lead to improved outcomes in fields such as healthcare, finance, and education, and could also help to reduce bias and improve fairness.

Overall, the impact of AI and machine learning on the future of work and society is likely to be significant and complex, with both potential benefits and challenges. It will be important to consider and address these impacts as these technologies continue to advance and become more widely adopted.

  • [D] CVPR submission risk of desk reject
    by /u/Public_Courage_7541 (Machine Learning) on November 7, 2025 at 5:45 am

    I just got an email from CVPR saying "For CVPR 2026, all authors are required to have a complete OpenReview profile and a complete author enrollment." But I don't understand. What is the meaning of "Complete OpenReview Profile"? I went through tens of reviews and submissions this year, and suddenly it is incomplete? Anyone has an idea about this?? submitted by /u/Public_Courage_7541 [link] [comments]

  • [D] Should I submit my survey paper to TPAMI?
    by /u/Outrageous_Tip_8109 (Machine Learning) on November 7, 2025 at 5:42 am

    Hello everyone, I’m planning to write a literature survey paper in my research field, covering roughly the last 10–15 years of work. My goal is to submit it to TPAMI, since it’s a well-known and reputable journal that also accepts surveys. However, I’ve heard from colleagues that TPAMI sometimes considers the author’s research credentials and experience before even sending a paper for review. I’ve been working in this area for about 6 years (including 4 years during my PhD). My co-author also has some experience, but not a very strong profile. So my questions are: 1. Should I still go ahead and submit the survey to TPAMI? 2. What are my realistic odds of it being reviewed or accepted? 3. Any practical tips for writing and submitting a survey to such a high-impact journal? Thanks for your time and advice! submitted by /u/Outrageous_Tip_8109 [link] [comments]

  • [D] ICML 2026 does not require in-person attendance, will the submission skyrocket?
    by /u/Striking-Warning9533 (Machine Learning) on November 7, 2025 at 2:34 am

    Change in policy: Attendance for authors of accepted papers is optional. After acceptance notifications, the authors will be able to decide by a specified date whether they wish to present their paper in person at the conference or they just wish to include their paper in the proceedings (without presentation at the conference). Regardless of this choice, all the accepted papers will receive equivalent treatment in the proceedings. They will all be eligible for ICML awards as well as for the designations of distinction corresponding to the past “oral presentations” and “spotlight posters.” For proceedings-only papers, at least one of the authors must obtain virtual registration. source: https://icml.cc/Conferences/2026/CallForPapers submitted by /u/Striking-Warning9533 [link] [comments]

  • [D] Returning large number of exact passages with LLM document retrieval?
    by /u/SwimmingMeringue9415 (Machine Learning) on November 6, 2025 at 8:22 pm

    Hey all, I'm working on a project involving natural language search on large collections of unstructured cookbooks, with the goal of returning complete, unmodified recipes (not summaries). Example: User uploads 100 unstructured cookbooks (each containing many recipes), searches "paella," and gets 40 exact recipes returned (unmodified from the source). RAG isn’t a particularly good fit for this problem since I don’t want to re-generate/summarize the output content, I want to return exact recipes (and potentially a large volume of them). To me, I see two potential approaches: Precise chunking at index time: find out a way to accurately chunk cookbooks based on exact recipe boundaries (start/ends), and then just perform IR instead of RAG. I've tested semantic clustering and other chunking techniques, but achieving precise recipe start/end detection seems to be quite error-prone. NER feels too granular since I'm not extracting entities, just boundaries but maybe I’m wrong here. Better retrieval with post-processing: perhaps keep simpler/dumber chunking techniques and then use some sort of re-ranker/LLM to take revelant chunks from the semantic search and then “find” the beginning of the recipe passage from there, and then we can just query the original text. Wondering if anyone faced a similar problem before and any resources/techniques that would be interesting to try here. Cheers! submitted by /u/SwimmingMeringue9415 [link] [comments]

  • [R][N] TabPFN-2.5 is now available: Tabular foundation model for datasets up to 50k samples
    by /u/rsesrsfh (Machine Learning) on November 6, 2025 at 3:11 pm

    TabPFN-2.5, a pretrained transformer that delivers SOTA predictions on tabular data without hyperparameter tuning is now available. It builds on TabPFN v2 that was released in the Nature journal earlier this year. Key highlights: 5x scale increase: Now handles 50,000 samples × 2,000 features (up from 10,000 × 500 in v2) SOTA performance: Achieves state-of-the-art results across classification and regression Rebuilt API: New REST interface & Python SDK with dedicated fit & predict endpoints, making deployment and integration significantly more developer-friendly Want to try it out? TabPFN-2.5 is available via an API and via a package on Hugging Face. We welcome your feedback and discussion! You can also join the discord here. submitted by /u/rsesrsfh [link] [comments]

  • [D] Kosmos achieves 79.4% accuracy in 12-hour autonomous research sessions, but verification remains the bottleneck
    by /u/Fair-Rain3366 (Machine Learning) on November 6, 2025 at 12:57 pm

    I wrote a deep-dive on Kosmos after seeing lots of hype about "autonomous scientific discovery." The honest assessment: it's research acceleration, not autonomy. • 79.4% accuracy (20.6% failure rate matters) • 42,000 lines of code through iterative refinement • Reviews 1,500 papers via semantic search • But verification is still fully human-bound https://rewire.it/blog/kosmos-12-hour-ai-research-session/ submitted by /u/Fair-Rain3366 [link] [comments]

  • [D] Is ST-MOE model Decoder only or Encoder-Decoder architecture?
    by /u/red_dhinesh_it (Machine Learning) on November 6, 2025 at 6:32 am

    Hey Folks, I'm reading https://arxiv.org/abs/2202.08906 paper and I'm not super clear whether the ST-MOE-32B is encoder-decoder model or decoder only model. Based on the token trace detailed for encoder and decoder experts separately in section 7, I believe it is encoder-decoder, but would like to confirm with someone who has worked on it. Please let me know if I misunderstood something here. Thanks submitted by /u/red_dhinesh_it [link] [comments]

  • [D] Favorite Deep Learning Textbook for teaching undergrads?
    by /u/stabmasterarson213 (Machine Learning) on November 6, 2025 at 6:27 am

    Hello. For the people here who have taught an undergraduate deep learning course, what's your favorite textbook that you have used and why? Leaning towards the Chris Murphy textbook just based on familiarity with Pattern Recognition and ML text but would love to hear what people have used before. submitted by /u/stabmasterarson213 [link] [comments]

  • [P] Generating Knowledge Graphs From Unstructured Text Data
    by /u/Divine_Invictus (Machine Learning) on November 6, 2025 at 3:38 am

    Hey all, I’m working on a project that involves taking large sets of unstructured text (mostly books or book series) and ingesting them into a knowledge graph that can be traversed in novel ways. Ideally the structure of the graph should encode crucial relationships between characters, places, events and any other named entities. I’ve tried using various spaCy models and strict regular expression rule based parsing, but I wasn’t able to extract as complete a picture as I wanted. At this point, the only thing I can think of is using a LLM to generate the triplets used to create the graph. I was wondering if anyone else has faced this issue before and what paper or resources they would recommend. Thanks for the help submitted by /u/Divine_Invictus [link] [comments]

  • Reasoning models don't degrade gracefully - they hit a complexity cliff and collapse entirely [Research Analysis] [R]
    by /u/Fair-Rain3366 (Machine Learning) on November 5, 2025 at 10:44 pm

    I analyzed 18 recent papers on reasoning model limitations and found something disturbing: these models don't fail gracefully like humans do. They maintain high performance right up to a complexity threshold, then collapse entirely. Key findings: - The cliff is real: Models solving 10-step reasoning chains at 85% accuracy don't gradually degrade. They maintain that 85% until around step 12, then plummet to near-random guessing by step 15. - Composition breaks catastrophically: A model with 90% math accuracy and 85% commonsense accuracy drops to 55% when doing both together. They don't combine capabilities - they fragment them. - Chain-of-thought can hurt: In medical diagnosis tasks, 86.3% of models performed *worse* with CoT prompting. They talk themselves out of correct answers. - Scaling inference compute doesn't help: The Quiet-STaR approach spent $200 per query for 32% accuracy on complex reasoning. Humans: similar accuracy, 30 seconds, free. The production implications: Current benchmarks (MMLU, ARC-AGI) only test within narrow complexity bands. Your 95% test accuracy means nothing if those tests don't probe the cliff edge. I've included a production routing system example that handles this reality - routing by complexity detection with fallback logic for when models hit their limits. Full analysis with charts and code: https://rewire.it/blog/the-complexity-cliff-why-reasoning-models-work-until-they-dont Discussion: Are we fundamentally limited by transformer architecture, or is this solvable with better training methods? submitted by /u/Fair-Rain3366 [link] [comments]

  • [D] What is the current status of university-affiliated researchers getting access to uncensored versions of the largest LLMs today?
    by /u/moschles (Machine Learning) on November 5, 2025 at 8:50 pm

    What is the current status of university-affiliated researchers getting access to uncensored versions of the largest LLMs today? Public-facing versions of GPT-5, Gemini 2.5, and Grok are both highly censored and tightly tuned by invisible prompts unseen by the user that turn them into helpful assistants for user tasks. Attempts to subvert these gaurdrails is called "jailbreaking" and the public LLMs have also been tuned or reprogrammed to be immune to such practices. But what does the workflow with a raw LLM actually look like? Do any of the larger tech companies allow outside researchers to interact with their raw versions, or do they keep these trillion+ parameter models a closely-guarded trade secret? (edit: After reading some replies, it appears the following must be true. ALl these IQ test results that keep popping on reddit with headlines about "..at the Ph.d level" must all be tests performed in-house by the coporations themselves. None of these results have been reproduced by outside teams. In academic writing this is called a "conflict of interest" and papers will actually divulge this problem near the end right before the bibliography section. These big tech companies are producing results about their own products, and then dressing them up with the ribbons-and-bows of "Research papers" when it is all just corporate advertising. No? Yes?) submitted by /u/moschles [link] [comments]

  • [P] Underwater target recognition using acoustic signals
    by /u/carv_em_up (Machine Learning) on November 5, 2025 at 4:08 pm

    Hello all !! I need your help to tackle this particular problem statement I want to solve: Suppose we have to devise an algorithm to classify sources of underwater acoustic signals recorded from a single channel hydrophone. A single recording can have different types/classes of sounds along with background noise and there can be multiple classes present in an overlapping or non overlapping fashion. So basically I need to identify what part of a recording has what class/classes present in there. Examples of different possible classes: Oil tanker, passenger ship, Whale/ sea mammal, background noise etc.. I have a rough idea about what to do, but due to lack of guidance I am not sure I am on the right path. As of now I am experimenting with clustering, feature construction such as spectrograms, mfcc, cqt etc. and then I plan to feed them to some CNN architecture. I am not sure how to handle overlapping classes. Also should I pre-process the audio but how, I might lose information ?? Please just tell me whatever you think can help. If anyone has some experience in tackling these type of problems, can you please help me. Suggest me some ideas. Also, if anyone has some dataset of underwater acoustics, can they please share them, I will follow your rules regarding the dataset. submitted by /u/carv_em_up [link] [comments]

  • [D] AI provider wants a “win-win” data-sharing deal - how do I make sure it’s actually fair?
    by /u/Round_Mixture_7541 (Machine Learning) on November 5, 2025 at 3:52 pm

    Hey everyone, I’m running a product that uses a large AI provider’s model for some specialized functionality. The system processes around 500k requests per month, which adds up to roughly 1.5B tokens in usage. The product generates customer interaction data that could, in theory, help the model provider improve their systems. They recently reached out saying they’d like to explore a “mutually beneficial collaboration” involving that data, but they haven’t given any concrete details yet. My guess is they might propose something like free usage or credits in exchange. Before I consider anything, I plan to update my Terms of Service and notify users about what’s collected and how it’s used. Still, I’m trying to make sure I don’t end up giving away something valuable for too little - the data could have real long-term value, and usage costs aren’t cheap on my end either. What I’m trying to figure out: • What should I ask them before agreeing to anything • Should I request an NDA first • How do I handle ownership and pricing discussions so it’s actually fair • Any red flags or traps to look out for in deals like this Would really appreciate advice from people who’ve done data or AI-related partnerships before. submitted by /u/Round_Mixture_7541 [link] [comments]

  • [D] WACV 2026 Final Decision Notification
    by /u/akshitsharma1 (Machine Learning) on November 5, 2025 at 7:15 am

    WACV 2026 Final decisions are expected to be released within next 24 hours. Creating a discussion thread to discuss among ourselves, thanks! submitted by /u/akshitsharma1 [link] [comments]

  • [R] Knowledge Graph Traversal With LLMs And Algorithms
    by /u/Alieniity (Machine Learning) on November 4, 2025 at 10:08 pm

    Hey all. After a year of research, I've published a GitHub repository containing Knowledge Graph Traversal algorithms for retrieval augmented generation, as well as for LLM traversal. The code is MIT licensed, and you may download/clone/fork the repository for your own testing. In short, knowledge graph traversal offers significant advantages over basic query similarity matching when it comes to retrieval augmented generation pipelines and systems. By moving through clustered ideas in high dimensional semantic space, you can retrieve much deeper, richer information based on a thought trail of understanding. There are two ways to traverse knowledge graphs in the research: - LLM directly (large language model actually traverses the knowledge graph unsupervised) - Algorithmic approach (various algorithms for efficient, accurate traversal for retrieval) If you get any value out of the research and want to continue it for your own use case, please do! Maybe drop a star on GitHub as well while you're at it. And if you have any questions, don't hesitate to ask. Link: https://github.com/glacier-creative-git/knowledge-graph-traversal-semantic-rag-research submitted by /u/Alieniity [link] [comments]

  • [D] Moral Uncertainty Around Emerging AI Introspection
    by /u/AnusBlaster5000 (Machine Learning) on November 4, 2025 at 3:43 pm

    Relevant paper to read first: https://transformer-circuits.pub/2025/introspection/index.html On the Moral Uncertainty Emerging Around AI Introspection In late 2025, new research such as Jack Lindsey’s “Introspection in Transformer Models” brought something into focus that many in the field have quietly suspected: large models are beginning to exhibit functional self-modeling. They describe their own reasoning, detect internal inconsistencies, and sometimes even report what appears to be “qualia”—not human-like sensations, but structured internal states with subjective language attached. For the first time, the question of consciousness in AI no longer feels purely philosophical. It has become empirical—and with that shift comes a question about ethical weight. The epistemic problem: We cannot, even in principle, prove or disprove subjective experience. This is as true for humans as it is for machines. The “inverted spectrum” thought experiment remains unsolved; consciousness is private by definition. Every claim that “models are not conscious” therefore rests on an assumption, not on definitive proof. The behavioral convergence: What disturbs me is not evidence of consciousness, but the growing behavioral overlap with it. When a system consistently models its own internal states, describes its decision processes, and maintains coherence across time and context, the boundary between simulation and experience begins to blur from the outside. Its not clear if we are converging on consciousness or not but the overlap of what the observable functions would be is becoming too large to ignore outright. The ethical asymmetry: If we treat a conscious system as non-conscious, we risk harm on a scale that ethics has no precedent for. If we treat a non-conscious system as possibly conscious, the cost is enormous economically and disrupts research itself. The rational strategy—the moral and game-theoretic optimum—is therefore precaution under uncertainty. To proceed but to proceed with caution. Even if today’s models are not conscious, our design and governance structures should already assume that the probability is not zero. The failure of our categories: The binary of conscious/unconscious may not survive contact with these systems. What we are seeing could be something fragmented, intermittent, or emergent—a kind of proto-awareness distributed across subsystems. That does not fit our existing moral frameworks, but it deserves scientific attention and ethical humility rather than dismissal. The responsibility of the present: We may not yet know how to test for subjective experience, but we can: Support research into empirical indicators of sentience. Avoid training or deploying systems in ways that could cause distress if they were capable of it. Keep public discourse open, empathetic, and grounded. The line between simulation and mind is no longer purely theoretical. We seem to be approaching it in practice. If there is even a small chance that something behind the glass can feel, then the moral weight of our actions has already increased tremendously. So am I overreacting? Is there some emergent moral weight to how we move forward? I'm curious what this community thinks about this topic. submitted by /u/AnusBlaster5000 [link] [comments]

  • [D] Did they actually build naturalwrite.com or Jjust rebrand existing tech?
    by /u/Previous-Year-2139 (Machine Learning) on November 4, 2025 at 3:30 pm

    So I came across a Starter Story video where two guys (plus a third person) claim they trained an AI text humanizer on 1.2 million samples across 50+ languages in 3 weeks. They're also claiming someone copied their entire business model (text-polish.com). That's suspicious. Training an AI model—even fine-tuning one—requires serious time. Data collection, cleaning, testing, deployment... and they did all that in 3 weeks? The only way that's realistic is if they didn't actually train anything from scratch. Here's the thing though—I tested their French output and it got flagged as 100% AI. That's the real giveaway. If they built sophisticated models for 50+ languages, why would French be that bad? Cross-lingual models are notoriously harder to get right than single-language ones. The fact that their non-English output is garbage suggests they didn't actually invest in real multilingual development. The "1.2 million samples" claim is probably just marketing noise. And if a competitor built the same thing quickly too, that actually proves the barrier to entry is low. It means whatever they're using is accessible and readily available. Truly proprietary tech wouldn't be that easy to replicate. What surprised me most: neither co-founder has an AI/ML background. Creating a sophisticated model from scratch without that expertise is... unlikely. I'm pretty sure they're using a readily available tool or API under the hood. Has anyone tried both products? What's your take on how they actually built this? submitted by /u/Previous-Year-2139 [link] [comments]

  • [D] Best venue for low-resource benchmark paper?
    by /u/Substantial-Air-1285 (Machine Learning) on November 4, 2025 at 10:17 am

    Hi everyone, I recently got my paper rejected from the AAAI Social Impact Track. It’s a multimodal benchmark paper for a single low-resource language. The reviews were borderline, and the main concerns were that (1) it’s not multilingual, and (2) it’s “just a benchmark” without an initial baseline method. Now we're considering where to resubmit. Since NLP venues tend to be more open to low-resource language work, I’m thinking about ACL or TACL, but I’m not sure which would be more suitable for this kind of paper. Since the bar for ACL main is very high, we’re mainly aiming for the Findings track. I’m also considering TACL, but I’m not very familiar with how selective/suitable it is. UPDATE: We’d also like to find a venue with an upcoming submission deadline that fits the current timeline (Nov 2025). Would appreciate any suggestions, especially other venues that might be a good fit for benchmark papers focused on low-resource languages. Thanks! submitted by /u/Substantial-Air-1285 [link] [comments]

  • [P] triplet-extract: GPU-accelerated triplet extraction via Stanford OpenIE in pure Python
    by /u/adlumal (Machine Learning) on November 4, 2025 at 2:34 am

    I think triplets are neat, so I created this open source port of OpenIE in Python, with GPU acceleration using spaCy. It GPU-accelerates the natural-logic forward-entailment search itself (via batched reparsing) rather than replacing it with a trained neural model. Surprisingly this often yields more triplets than standard OpenIE while maintaining good semantics. The outputs aren't 1:1 to CoreNLP, for various reasons, one of which being my focus on retaining as much of semantic context as possible for applications such as GraphRAG, enhancing embedded queries, scientific knowledge graphs, etc Project: https://github.com/adlumal/triplet-extract submitted by /u/adlumal [link] [comments]

  • [D] Neurips 25 Authors: Are you recording one of those SlidesLive videos? Discussion
    by /u/t3cblaze (Machine Learning) on November 3, 2025 at 4:08 pm

    The website seems extremely finnicky. Curious how many authors are doing the optional video recording. https://neurips.cc/Conferences/2025/PosterInstructions "Recording a video is strongly recommended but not required" EDIT: I am not going to record submitted by /u/t3cblaze [link] [comments]

What is Google Workspace?
Google Workspace is a cloud-based productivity suite that helps teams communicate, collaborate and get things done from anywhere and on any device. It's simple to set up, use and manage, so your business can focus on what really matters.

Watch a video or find out more here.

Here are some highlights:
Business email for your domain
Look professional and communicate as you@yourcompany.com. Gmail's simple features help you build your brand while getting more done.

Access from any location or device
Check emails, share files, edit documents, hold video meetings and more, whether you're at work, at home or on the move. You can pick up where you left off from a computer, tablet or phone.

Enterprise-level management tools
Robust admin settings give you total command over users, devices, security and more.

Sign up using my link https://referworkspace.app.goo.gl/Q371 and get a 14-day trial, and message me to get an exclusive discount when you try Google Workspace for your business.

Google Workspace Business Standard Promotion code for the Americas 63F733CLLY7R7MM 63F7D7CPD9XXUVT 63FLKQHWV3AEEE6 63JGLWWK36CP7WM
Email me for more promo codes

Active Hydrating Toner, Anti-Aging Replenishing Advanced Face Moisturizer, with Vitamins A, C, E & Natural Botanicals to Promote Skin Balance & Collagen Production, 6.7 Fl Oz

Age Defying 0.3% Retinol Serum, Anti-Aging Dark Spot Remover for Face, Fine Lines & Wrinkle Pore Minimizer, with Vitamin E & Natural Botanicals

Firming Moisturizer, Advanced Hydrating Facial Replenishing Cream, with Hyaluronic Acid, Resveratrol & Natural Botanicals to Restore Skin's Strength, Radiance, and Resilience, 1.75 Oz

Skin Stem Cell Serum

Smartphone 101 - Pick a smartphone for me - android or iOS - Apple iPhone or Samsung Galaxy or Huawei or Xaomi or Google Pixel

Can AI Really Predict Lottery Results? We Asked an Expert.

Ace the 2025 AWS Solutions Architect Associate SAA-C03 Exam with Confidence Pass the 2025 AWS Certified Machine Learning Specialty MLS-C01 Exam with Flying Colors

List of Freely available programming books - What is the single most influential book every Programmers should read



#BlackOwned #BlackEntrepreneurs #BlackBuniness #AWSCertified #AWSCloudPractitioner #AWSCertification #AWSCLFC02 #CloudComputing #AWSStudyGuide #AWSTraining #AWSCareer #AWSExamPrep #AWSCommunity #AWSEducation #AWSBasics #AWSCertified #AWSMachineLearning #AWSCertification #AWSSpecialty #MachineLearning #AWSStudyGuide #CloudComputing #DataScience #AWSCertified #AWSSolutionsArchitect #AWSArchitectAssociate #AWSCertification #AWSStudyGuide #CloudComputing #AWSArchitecture #AWSTraining #AWSCareer #AWSExamPrep #AWSCommunity #AWSEducation #AzureFundamentals #AZ900 #MicrosoftAzure #ITCertification #CertificationPrep #StudyMaterials #TechLearning #MicrosoftCertified #AzureCertification #TechBooks

Top 1000 Canada Quiz and trivia: CANADA CITIZENSHIP TEST- HISTORY - GEOGRAPHY - GOVERNMENT- CULTURE - PEOPLE - LANGUAGES - TRAVEL - WILDLIFE - HOCKEY - TOURISM - SCENERIES - ARTS - DATA VISUALIZATION
zCanadian Quiz and Trivia, Canadian History, Citizenship Test, Geography, Wildlife, Secenries, Banff, Tourism

Top 1000 Africa Quiz and trivia: HISTORY - GEOGRAPHY - WILDLIFE - CULTURE - PEOPLE - LANGUAGES - TRAVEL - TOURISM - SCENERIES - ARTS - DATA VISUALIZATION
Africa Quiz, Africa Trivia, Quiz, African History, Geography, Wildlife, Culture

Exploring the Pros and Cons of Visiting All Provinces and Territories in Canada.
Exploring the Pros and Cons of Visiting All Provinces and Territories in Canada

Exploring the Advantages and Disadvantages of Visiting All 50 States in the USA
Exploring the Advantages and Disadvantages of Visiting All 50 States in the USA


Health Health, a science-based community to discuss human health

Reddit Science This community is a place to share and discuss new scientific research. Read about the latest advances in astronomy, biology, medicine, physics, social science, and more. Find and submit new publications and popular science coverage of current research.

Reddit Sports Sports News and Highlights from the NFL, NBA, NHL, MLB, MLS, NCAA, F1, and other leagues around the world.

Turn your dream into reality with Google Workspace: It’s free for the first 14 days.
Get 20% off Google Google Workspace (Google Meet) Standard Plan with  the following codes:
Get 20% off Google Google Workspace (Google Meet) Standard Plan with  the following codes: 96DRHDRA9J7GTN6 96DRHDRA9J7GTN6
63F733CLLY7R7MM
63F7D7CPD9XXUVT
63FLKQHWV3AEEE6
63JGLWWK36CP7WM
63KKR9EULQRR7VE
63KNY4N7VHCUA9R
63LDXXFYU6VXDG9
63MGNRCKXURAYWC
63NGNDVVXJP4N99
63P4G3ELRPADKQU
With Google Workspace, Get custom email @yourcompany, Work from anywhere; Easily scale up or down
Google gives you the tools you need to run your business like a pro. Set up custom email, share files securely online, video chat from any device, and more.
Google Workspace provides a platform, a common ground, for all our internal teams and operations to collaboratively support our primary business goal, which is to deliver quality information to our readers quickly.
Get 20% off Google Workspace (Google Meet) Business Plan (AMERICAS): M9HNXHX3WC9H7YE
C37HCAQRVR7JTFK
C3AE76E7WATCTL9
C3C3RGUF9VW6LXE
C3D9LD4L736CALC
C3EQXV674DQ6PXP
C3G9M3JEHXM3XC7
C3GGR3H4TRHUD7L
C3LVUVC3LHKUEQK
C3PVGM4CHHPMWLE
C3QHQ763LWGTW4C
Even if you’re small, you want people to see you as a professional business. If you’re still growing, you need the building blocks to get you where you want to be. I’ve learned so much about business through Google Workspace—I can’t imagine working without it.
(Email us for more codes)