Download the AI & Machine Learning For Dummies PRO App: iOS - Android Our AI and Machine Learning For Dummies PRO App can help you Ace the following AI and Machine Learning certifications:
What are some ways to increase precision or recall in machine learning?
What are some ways to Boost Precision and Recall in Machine Learning?
Sensitivity vs Specificity?
In machine learning, recall is the ability of the model to find all relevant instances in the data while precision is the ability of the model to correctly identify only the relevant instances. A high recall means that most relevant results are returned while a high precision means that most of the returned results are relevant. Ideally, you want a model with both high recall and high precision but often there is a trade-off between the two. In this blog post, we will explore some ways to increase recall or precision in machine learning.
There are two main ways to increase recall:
by increasing the number of false positives or by decreasing the number of false negatives. To increase the number of false positives, you can lower your threshold for what constitutes a positive prediction. For example, if you are trying to predict whether or not an email is spam, you might lower the threshold for what constitutes spam so that more emails are classified as spam. This will result in more false positives (emails that are not actually spam being classified as spam) but will also increase recall (more actual spam emails being classified as spam).
To decrease the number of false negatives,
you can increase your threshold for what constitutes a positive prediction. For example, going back to the spam email prediction example, you might raise the threshold for what constitutes spam so that fewer emails are classified as spam. This will result in fewer false negatives (actual spam emails not being classified as spam) but will also decrease recall (fewer actual spam emails being classified as spam).
There are two main ways to increase precision:
by increasing the number of true positives or by decreasing the number of true negatives. To increase the number of true positives, you can raise your threshold for what constitutes a positive prediction. For example, using the spam email prediction example again, you might raise the threshold for what constitutes spam so that fewer emails are classified as spam. This will result in more true positives (emails that are actually spam being classified as spam) but will also decrease precision (more non-spam emails being classified as spam).
you can lower your threshold for what constitutes a positive prediction. For example, going back to the spam email prediction example once more, you might lower the threshold for what constitutes spam so that more emails are classified as spam. This will result in fewer true negatives (emails that are not actually spam not being classified as spam) but will also decrease precision (more non-spam emails being classified as spam).
To summarize,
there are a few ways to increase precision or recall in machine learning. One way is to use a different evaluation metric. For example, if you are trying to maximize precision, you can use the F1 score, which is a combination of precision and recall. Another way to increase precision or recall is to adjust the threshold for classification. This can be done by changing the decision boundary or by using a different algorithm altogether.
Sensitivity vs Specificity
In machine learning, sensitivity and specificity are two measures of the performance of a model. Sensitivity is the proportion of true positives that are correctly predicted by the model, while specificity is the proportion of true negatives that are correctly predicted by the model.
Google introduced computing units, which you can purchase just like any other cloud computing unit you can from AWS or Azure etc. With Pro you get 100, and with Pro+ you get 500 computing units. GPU, TPU and option of High-RAM effects how much computing unit you use hourly. If you don’t have any computing units, you can’t use “Premium” tier gpus (A100, V100) and even P100 is non-viable.
Google Colab Pro+ comes with Premium tier GPU option, meanwhile in Pro if you have computing units you can randomly connect to P100 or T4. After you use all of your computing units, you can buy more or you can use T4 GPU for the half or most of the time (there can be a lot of times in the day that you can’t even use a T4 or any kinds of GPU). In free tier, offered gpus are most of the time K80 and P4, which performs similar to a 750ti (entry level gpu from 2014) with more VRAM.
For your consideration, T4 uses around 2, and A100 uses around 15 computing units hourly. Based on the current knowledge, computing units costs for GPUs tend to fluctuate based on some unknown factor.
For hobbyists and (under)graduate school duties, it will be better to use your own gpu if you have something with more than 4 gigs of VRAM and better than 750ti, or atleast purchase google pro to reach T4 even if you have no computing units remaining.
For small research companies, and non-trivial research at universities, and probably for most of the people Colab now probably is not a good option.
Colab Pro+ can be considered if you want Pro but you don’t sit in front of your computer, since it disconnects after 90 minutes of inactivity in your computer. But this can be overcomed with some scripts to some extend. So for most of the time Colab Pro+ is not a good option.
If you have anything more to say, please let me know so I can edit this post with them. Thanks!
In machine learning, precision and recall trade off against each other; increasing one often decreases the other. There is no single silver bullet solution for increasing either precision or recall; it depends on your specific use case which one is more important and which methods will work best for boosting whichever metric you choose. In this blog post, we explored some methods for increasing either precision or recall; hopefully this gives you a starting point for improving your own models!
Please post your personal projects, startups, product placements, collaboration needs, blogs etc. Please mention the payment and pricing requirements for products and services. Please do not post link shorteners, link aggregator websites , or auto-subscribe links. Any abuse of trust will lead to bans. Encourage others who create new posts for questions to post here instead! Thread will stay alive until next one so keep posting after the date in the title. Meta: This is an experiment. If the community doesnt like this, we will cancel it. This is to encourage those in the community to promote their work by not spamming the main threads. submitted by /u/AutoModerator [link] [comments]
Hey all, I've been using sagemaker quite a bit lately for training ML models and doing deployments. I know enough about aws and instance types to create training nodes that have enough capacity to train my models, but many times I am underutilizing RAM, GPU memory, or CPUs, so it feels like this leads to a lot of waste (and extra cost). How do you guys figure out what type of instance or resources would best fit your needs without being too wasteful? Is there any way to adjust resources automatically, or any library that could handle that for you? submitted by /u/InformationEmpty1440 [link] [comments]
Check out this example project on how to find transcripts of audio recordings with positive emotions. A good example of a project demonstrating of extract actionable insights from audio! It takes common voice dataset of audio files from hagging face, applies emotion recognition model and whisper-tiny model for the transcripts. All is organized in a nice looking batch pipeline. An interesting detail - No need to extract archives! This pipeline analyzes audio files directly from tar archives, saving you extra steps. Video: https://www.youtube.com/watch?v=OCm5W0L5BTU Colab notebook: https://colab.research.google.com/github/iterative/datachain-examples/blob/main/audio/hf_common_voice.ipynb Jupyter Notebook: https://github.com/iterative/datachain-examples/blob/main/audio/hf_common_voice.ipynb submitted by /u/dmpetrov [link] [comments]
There was a paper released along with a GitHub repository of an extremely well-made transformer designed for testing out new components. But I can't find it! It's not one of the ones that has existed like HuggingFace ones. Any clue? submitted by /u/Breck_Emert [link] [comments]
Hi everyone, I’m currently working through the recent paper “GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?”, but I’ve run into some issues and was hoping someone here might have insights. Posterior Distribution: In the implementation, a posterior distribution is used, but I couldn’t find the formula or explanation in the paper. Does anyone know where this comes from or how it’s derived? Asynchronous Model: The paper and its implementation don’t seem entirely consistent when it comes to the asynchronous model. Specifically: Is the generation process done step-by-step asynchronously? Or does it first denoise the attribute vectors entirely before moving on to edge denoising? I’ve tried searching online, but since this is a new paper, there isn’t much discussion or documentation yet. Any help, advice, or pointers would be greatly appreciated! submitted by /u/Noname_emanon_ [link] [comments]
Everyone knows the market is bad right now for software engineers. Probably as bad as it's every been. What is the consensus on the job market for data professionals right now? submitted by /u/Will_Tomos_Edwards [link] [comments]
Hello folks, I've been working on an agentic solution where you can have an autonomous agent taking live calls. We're using a pipeline of Speech to Text, LLM for generating responses and then Text to Speech. In this pipeline, Speech to text is causing some issues because it's difficult to determine when exactly a sentence is over since the user can take pauses. Moreover, when multiple inputs go into LLM, multiple responses are generated and they queue up for Text to speech. How would you solve this problem? How would you also handle cases where the user interrupts the agent? submitted by /u/Leo2000Immortal [link] [comments]
We all saw in class the trade off between bias and variance, that we don't want our train loss to keep going down and our test loss go up. But in practice I feel like doing hyperparameter tuning for classic ML models with GridSearchCV / BayesSearchCV is not enough. Even though I do cross validation, the search.best_model obtained at the end is almost always overfitting. How can you actually perform a search that will give you a robust generalized model with higher chances ? submitted by /u/desslyie [link] [comments]
Head to head of meme-interpretability with the same image and text prompt! Anecdotal but interesting responses. Also clear winner! submitted by /u/No_Cartoonist8629 [link] [comments]
In my academic field (social sciences) I deal with the problem of bias in SA models. My previous work showed that deep learning SA systems inherit bias (e.g. nonrepresentative of the population political bias) from annotators: https://arxiv.org/abs/2407.13891 Now I devised a solution that used a technique I call semantic blinding to provide only the bare necessary information for the model to predict emotions in text, leaving no signal for the model to overfit and produce bias from: https://arxiv.org/abs/2411.12493 Interested to hear your thoughts before I publish the SProp Gnn. Do you think it could be useful beyond the academia? submitted by /u/Hub_Pli [link] [comments]
When would the phase 2 decision come out? I know the date is December 9th, but would there be chances for the result to come out earlier than the announced date? or did it open the result at exact time in previous years? (i.e., 2024, 2023, 2022 ....) Kinda make me sick to keep waiting. submitted by /u/No-Style-7975 [link] [comments]
Few months ago, I migrated from TF 2.0 to Jax. I found that jax is significantly faster than Tf. I noticed in the official documentation that it relies on XLA default that uses JIT compilation which makes execution faster. I also noticed that TF graphs also have option to enable JIT compilation with XLA. But still jax dominates TF with XLA. I just want to know why. submitted by /u/Odd-Detective289 [link] [comments]
Multimodal AI is changing the game by combining text, images, and even video into a single, cohesive system. It’s being talked about as a major leap in AI capabilities. What industries do you think will benefit the most from this tech? And are there any challenges you see in integrating these models into everyday use? Would love to hear everyone's thoughts! submitted by /u/Frosty_Programmer672 [link] [comments]
Say you’ve selected the best classifier for a particular problem, using threshold invariant metrics such as AUROC, Brier score, or log loss. It’s now time to choose the classification threshold. This will clearly depend on the use case and the cost/ benefits associated with true positives, false positives, etc. Often I see people advising to choose a threshold by looking at metrics such precision and recall. What I don’t see very often is people explicitly defining relative (or absolute, if possible) costs/ benefits of each cell in the confusion matrix (or more precisely the action that will be taken as a result). For example a true positive is worth $1000, a false positive -$500 and the other cells $0. You then optimise the threshold based on maximum benefit using a cost-threshold curve. The precision and recall can also be reported, but they are secondary to the benefit optimisation and not used directly in the choice. I find this much more intuitive and is my go-to. Does anyone else regularly use this approach? In what situations might this approach not make sense? submitted by /u/hazzaphill [link] [comments]
Hello everyone, I am looking for methods that can automatically categorize and select layers from for transfer learning. If you know any such methods or research please let me know or share. Thanks submitted by /u/reshail_raza [link] [comments]
Imagine a customer support chatbot for an e-commerce platform that retrieves relevant product details from its knowledge base and performs web searches for additional information. Furthermore, it remembers past conversations to deliver a seamless and personalized experience for returning users. Here is how it works: - Store your own data in the knowledge base—in our case, a Website URL. - Convert the data into embeddings and save it in the Qdrant Vector Database. - Use phidata Agentic Workflow to combine Tools, LLM, Memory, and the Knowledge Base. Code Implementation Video: https://www.youtube.com/watch?v=CDC3GOuJyZ0 submitted by /u/External_Ad_11 [link] [comments]
New paper and code for the scale-wise transformer for fast text-to-image generation from our team at Yandex Research Switti outperforms existing T2I AR models and competes with state-of-the-art T2I diffusion models while being faster than distilled diffusion models. Code with checkpoints: https://github.com/yandex-research/switti Generation examples submitted by /u/_puhsu [link] [comments]
Today I Learned (TIL) You learn something new every day; what did you learn today? Submit interesting and specific facts about something that you just found out here.
Reddit Science This community is a place to share and discuss new scientific research. Read about the latest advances in astronomy, biology, medicine, physics, social science, and more. Find and submit new publications and popular science coverage of current research.
What do you think of the list? What would you add? LeBron James scores 40,000 career points Mondo Duplantis smashes Olympic pole vault records Spain’s historic Euro 2024 victory, featuring - - Lamine Yamal’s stunning debut Rafael Nadal bids farewell to tennis with an emotional retirement Novak Djokovic finally captures Olympic gold in Paris Caitlin Clark and Angel Reese redefine women’s basketball and its impact Record-breaking Super Bowl LVIII captivates millions The AFC Asian Cup and AFCON showcase football’s global influence Simone Biles makes a triumphant Olympic comeback with record-breaking performances Steph Curry delivers an unforgettable Olympic final performance submitted by /u/bakenzo [link] [comments]