AI Jobs and Career
And before we wrap up today's AI news, I wanted to share an exciting opportunity for those of you looking to advance your careers in the AI space. You know how rapidly the landscape is evolving, and finding the right fit can be a challenge. That's why I'm excited about Mercor – they're a platform specifically designed to connect top-tier AI talent with leading companies. Whether you're a data scientist, machine learning engineer, or something else entirely, Mercor can help you find your next big role. If you're ready to take the next step in your AI career, check them out through my referral link: https://work.mercor.com/?referralCode=82d5f4e3-e1a3-4064-963f-c197bb2c8db1. It's a fantastic resource, and I encourage you to explore the opportunities they have available.
- Full Stack Engineer [$150K-$220K]
- Software Engineer, Tooling & AI Workflow, Contract [$90/hour]
- DevOps Engineer, India, Contract [$90/hour]
- More AI Jobs Opportunitieshere
| Job Title | Status | Pay |
|---|---|---|
| Full-Stack Engineer | Strong match, Full-time | $150K - $220K / year |
| Developer Experience and Productivity Engineer | Pre-qualified, Full-time | $160K - $300K / year |
| Software Engineer - Tooling & AI Workflows (Contract) | Contract | $90 / hour |
| DevOps Engineer (India) | Full-time | $20K - $50K / year |
| Senior Full-Stack Engineer | Full-time | $2.8K - $4K / week |
| Enterprise IT & Cloud Domain Expert - India | Contract | $20 - $30 / hour |
| Senior Software Engineer | Contract | $100 - $200 / hour |
| Senior Software Engineer | Pre-qualified, Full-time | $150K - $300K / year |
| Senior Full-Stack Engineer: Latin America | Full-time | $1.6K - $2.1K / week |
| Software Engineering Expert | Contract | $50 - $150 / hour |
| Generalist Video Annotators | Contract | $45 / hour |
| Generalist Writing Expert | Contract | $45 / hour |
| Editors, Fact Checkers, & Data Quality Reviewers | Contract | $50 - $60 / hour |
| Multilingual Expert | Contract | $54 / hour |
| Mathematics Expert (PhD) | Contract | $60 - $80 / hour |
| Software Engineer - India | Contract | $20 - $45 / hour |
| Physics Expert (PhD) | Contract | $60 - $80 / hour |
| Finance Expert | Contract | $150 / hour |
| Designers | Contract | $50 - $70 / hour |
| Chemistry Expert (PhD) | Contract | $60 - $80 / hour |
How can I oblige tensorflow to use all gpu power?
TensorFlow, a popular open-source machine learning library, is designed to automatically utilize the available GPU resources on a device. By default, TensorFlow will use all available GPU resources when training or running a model.
Tensorflow Interview Questions and Answers
However, there are a few things you can do to ensure that TensorFlow is using all of the GPU resources available:
- Set the GPU memory growth option: TensorFlow allows you to set a flag to control the GPU memory growth. You can set the flag by using the following command:
import tensorflow as tf
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)- Limit the number of CPU threads: By default, TensorFlow will use all available CPU threads, which can limit the amount of GPU resources available. You can set the number of CPU threads that TensorFlow should use by using the following command:
import os
os.environ["OMP_NUM_THREADS"] = "4"
- Ensure that you have the latest Tensorflow version and GPU drivers: Newer Tensorflow versions includes more optimized GPU utilization, the same goes for the GPU driver, making sure that you have the latest version of both of them could help boost your GPU performance.
- Manage GPU resources with CUDA: if you’re using CUDA with Tensorflow you can use CUDA streams to synchronize and manage multiple GPU resources.
It’s worth noting that even if TensorFlow is using all available GPU resources, the performance of your model may still be limited by other factors such as the amount of data, the complexity of the model, and the number of training iterations.
It’s also important to mention that to ensure the best performance it’s always best to measure and test your model with different settings and configurations, depending on the specific use-case and dataset.


























96DRHDRA9J7GTN6