Mastering GPT-4: Simplified Guide for Everyday Users

Mastering GPT-4: Simplified Guide for Everyday Users or How to make GPT-4 your b*tch!

Listen Here

Recently, while updating our OpenAI Python library, I encountered a marketing intern struggling with GPT-4. He was overwhelmed by its repetitive responses, lengthy answers, and not quite getting what he needed from it. Realizing the need for a simple, user-friendly explanation of GPT-4’s functionalities, I decided to create this guide. Whether you’re new to AI or looking to refine your GPT-4 interactions, these tips are designed to help you navigate and optimize your experience.

Embark on a journey to master GPT-4 with our easy-to-understand guide, ‘Mastering GPT-4: Simplified Guide for Everyday Users‘.

🌟🤖 This blog/video/podcast is perfect for both AI newbies and those looking to enhance their experience with GPT-4. We break down the complexities of GPT-4’s settings into simple, practical terms, so you can use this powerful tool more effectively and creatively.


🔍 What You’ll Learn:

  1. Frequency Penalty: Discover how to reduce repetitive responses and make your AI interactions sound more natural.
  2. Logit Bias: Learn to gently steer the AI towards or away from specific words or topics.
  3. Presence Penalty: Find out how to encourage the AI to transition smoothly between topics.
  4. Temperature: Adjust the AI’s creativity level, from straightforward responses to imaginative ideas.
  5. Top_p (Nucleus Sampling): Control the uniqueness of the AI’s suggestions, from conventional to out-of-the-box ideas.
Mastering GPT-4: Simplified Guide for Everyday Users
Mastering GPT-4: Simplified Guide for Everyday Users

1. Frequency Penalty: The Echo Reducer

  • What It Does: This setting helps minimize repetition in the AI’s responses, ensuring it doesn’t sound like it’s stuck on repeat.
  • Examples:
    • Low Setting: You might get repeated phrases like “I love pizza. Pizza is great. Did I mention pizza?”
    • High Setting: The AI diversifies its language, saying something like “I love pizza for its gooey cheese, tangy sauce, and crispy crust. It’s a culinary delight.”

2. Logit Bias: The Preference Tuner

  • What It Does: It nudges the AI towards or away from certain words, almost like gently guiding its choices.
  • Examples:
    • Against ‘pizza’: The AI might focus on other aspects, “I enjoy Italian food, especially pasta and gelato.”
    • Towards ‘pizza’: It emphasizes the chosen word, “Italian cuisine brings to mind the delectable pizza, a feast of flavors in every slice.”

3. Presence Penalty: The Topic Shifter

  • What It Does: This encourages the AI to change subjects more smoothly, avoiding dwelling too long on a single topic.
  • Examples:
    • Low Setting: It might stick to one idea, “I enjoy sunny days. Sunny days are pleasant.”
    • High Setting: The AI transitions to new ideas, “Sunny days are wonderful, but I also appreciate the serenity of rainy evenings and the beauty of a snowy landscape.”

4. Temperature: The Creativity Dial

  • What It Does: Adjusts how predictable or creative the AI’s responses are.
  • Examples:
    • Low Temperature: Expect straightforward answers like, “Cats are popular pets known for their independence.”
    • High Temperature: It might say something whimsical, “Cats, those mysterious creatures, may just be plotting a cute but world-dominating scheme.”

5. Top_p (Nucleus Sampling): The Imagination Spectrum

  • What It Does: Controls how unique or unconventional the AI’s suggestions are.
  • Examples:
    • Low Setting: You’ll get conventional ideas, “Vacations are perfect for unwinding and relaxation.”
    • High Setting: Expect creative and unique suggestions, “Vacation ideas range from bungee jumping in New Zealand to attending a silent meditation retreat in the Himalayas.”

Mastering GPT-4: Understanding Temperature in GPT-4; A Guide to AI Probability and Creativity

If you’re intrigued by how the ‘temperature’ setting impacts the output of GPT-4 (and other Large Language Models or LLMs), here’s a straightforward explanation:


AI Unraveled: Demystifying Frequently Asked Questions on Artificial Intelligence (OpenAI, ChatGPT, Google Bard, Generative AI, Discriminative AI, xAI, LLMs, GPUs, Machine Learning, NLP, Promp Engineering)

LLMs, like GPT-4, don’t just spit out a single next token; they actually calculate probabilities for every possible token in their vocabulary. For instance, if the model is continuing the sentence “The cat in the,” it might assign probabilities like: Hat: 80%, House: 5%, Basket: 4%, and so on, down to the least likely words. These probabilities cover all possible tokens, adding up to 100%.

What happens next is crucial: one of these tokens is selected based on their probabilities. So, ‘hat’ would be chosen 80% of the time. This approach introduces a level of randomness in the model’s output, making it less deterministic.

Now, the ‘temperature’ parameter plays a role in how these probabilities are adjusted or skewed before a token is selected. Here’s how it works:

  • Temperature = 1: This keeps the original probabilities intact. The output remains somewhat random but not skewed.
  • Temperature < 1: This skews probabilities toward more likely tokens, making the output more predictable. For example, ‘hat’ might jump to a 95% chance.
  • Temperature = 0: This leads to complete determinism. The most likely token (‘hat’, in our case) gets a 100% probability, eliminating randomness.
  • Temperature > 1: This setting spreads out the probabilities, making less likely words more probable. It increases the chance of producing varied and less predictable outputs.

A very high temperature setting can make unlikely and nonsensical words more probable, potentially resulting in outputs that are creative but might not make much sense.

Pass the AWS Certified Machine Learning Specialty Exam with Flying Colors: Master Data Engineering, Exploratory Data Analysis, Modeling, Machine Learning Implementation, Operations, and NLP with 3 Practice Exams. Get the MLS-C01 Practice Exam book Now!

Temperature isn’t just about creativity; it’s about allowing the LLM to explore less common paths from its training data. When used judiciously, it can lead to more diverse responses. The ideal temperature setting depends on your specific needs:

  • For precision and reliability (like in coding or when strict adherence to a format is required), a lower temperature (even zero) is preferable.
  • For creative tasks like writing, brainstorming, or naming, where there’s no single ‘correct’ answer, a higher temperature can yield more innovative and varied results.

So, by adjusting the temperature, you can fine-tune GPT-4’s outputs to be as predictable or as creative as your task requires.

Mastering GPT-4: Conclusion

With these settings, you can tailor GPT-4 to better suit your needs, whether you’re looking for straightforward information or creative and diverse insights. Remember, experimenting with these settings will help you find the perfect balance for your specific use case. Happy exploring with GPT-4!

Mastering GPT-4 Annex: More about GPT-4 API Settings

I think certain parameters in the API are more useful than others. Personally, I haven’t come across a use case for frequency_penalty or presence_penalty.

However, for example, logit_bias could be quite useful if you want the LLM to behave as a classifier (output only either “yes” or “no”, or some similar situation).

Basically logit_bias tells the LLM to prefer or avoid certain tokens by adding a constant number (bias) to the likelihood of each token. LLMs output a number (referred to as a logit) for each token in their dictionary, and by increasing or decreasing the logit value of a token, you make that token more or less likely to be part of the output. Setting the logit_bias of a token to +100 would mean it will output that token effectively 100% of the time, and -100 would mean the token is effectively never output. You may think, why would I want a token(s) to be output 100% of the time? You can for example set multiple tokens to +100, and it will choose between only those tokens when generating the output.

One very useful usecase would be to combine the temperature, logit_bias, and max_tokens parameters.

You could set:

`temperature` to zero (which would force the LLM to select the top-1 most likely token/with the highest logit value 100% of the time, since by default there’s a bit of randomness added)

`logit_bias` to +100 (the maximum value permitted) for both the tokens “yes” and “no”

`max_tokens` value to one

Since the LLM typically never outputs logits of >100 naturally, you are basically ensuring that the output of the LLM is ALWAYS either the token “yes” or the token “no”. And it will still pick the correct one of the two since you’re adding the same number to both, and one will still have the higher logit value than the other.

This is very useful if you need the output of the LLM to be a classifier, e.g. “is this text about cats” -> yes/no, without needing to fine tune the output of the LLM to “understand” that you only want a yes/no answer. You can force that behavior using postprocessing only. Of course, you can select any tokens, not just yes/no, to be the only possible tokens. Maybe you want the tokens “positive”, “negative” and “neutral” when classifying the sentiment of a text, etc.

What is the difference between frequence_penalty and presence_penalty?

frequency_penalty reduces the probability of a token appearing multiple times proportional to how many times it’s already appeared, while presence_penalty reduces the probability of a token appearing again based on whether it’s appeared at all.

From the API docs:

frequency_penalty Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim.

presence_penalty Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model’s likelihood to talk about new topics.

Mastering GPT-4 References:

https://platform.openai.com/docs/api-reference/chat/create#chat-create-logit_bias.

https://help.openai.com/en/articles/5247780-using-logit-bias-to-define-token-probability

📢 Advertise with us and Sponsorship Opportunities

Are you eager to expand your understanding of artificial intelligence? Look no further than the essential book “AI Unraveled: Demystifying Frequently Asked Questions on Artificial Intelligence,” available at Etsy, Shopify, Apple, Google, or Amazon

Decoding GPTs & LLMs: Training, Memory & Advanced Architectures Explained

Mastering GPT-4 Transcript

Welcome to AI Unraveled, the podcast that demystifies frequently asked questions on artificial intelligence and keeps you up to date with the latest AI trends. Join us as we delve into groundbreaking research, innovative applications, and emerging technologies that are pushing the boundaries of AI. From the latest trends in ChatGPT and the recent merger of Google Brain and DeepMind, to the exciting developments in generative AI, we’ve got you covered with a comprehensive update on the ever-evolving AI landscape. In today’s episode, we’ll cover optimizing AI interactions with Master GPT-4, including reducing repetition, steering conversations, adjusting creativity, using the frequency penalty setting to diversify language, utilizing logit bias to guide word choices, implementing presence penalty for smoother transitions, adjusting temperature for different levels of creativity in responses, controlling uniqueness with Top_p (Nucleus Sampling), and an introduction to the book “AI Unraveled” which answers frequently asked questions about artificial intelligence.

Ace the Microsoft Azure Fundamentals AZ-900 Certification Exam: Pass the Azure Fundamentals Exam with Ease

Hey there! Have you ever heard of GPT-4? It’s an amazing tool developed by OpenAI that uses artificial intelligence to generate text. However, I’ve noticed that some people struggle with it. They find its responses repetitive, its answers too long, and they don’t always get what they’re looking for. That’s why I decided to create a simplified guide to help you master GPT-4.

Introducing “Unlocking GPT-4: A User-Friendly Guide to Optimizing AI Interactions“! This guide is perfect for both AI beginners and those who want to take their GPT-4 experience to the next level. We’ll break down all the complexities of GPT-4 into simple, practical terms, so you can use this powerful tool more effectively and creatively.

In this guide, you’ll learn some key concepts that will improve your interactions with GPT-4. First up, we’ll explore the Frequency Penalty. This technique will help you reduce repetitive responses and make your AI conversations sound more natural. Then, we’ll dive into Logit Bias. You’ll discover how to gently steer the AI towards or away from specific words or topics, giving you more control over the conversation.

Next, we’ll tackle the Presence Penalty. You’ll find out how to encourage the AI to transition smoothly between topics, allowing for more coherent and engaging discussions. And let’s not forget about Temperature! This feature lets you adjust the AI’s creativity level, so you can go from straightforward responses to more imaginative ideas.

Last but not least, we have Top_p, also known as Nucleus Sampling. With this technique, you can control the uniqueness of the AI’s suggestions. You can stick to conventional ideas or venture into out-of-the-box thinking.

So, if you’re ready to become a GPT-4 master, join us on this exciting journey by checking out our guide. Happy optimizing!

Today, I want to talk about a really cool feature in AI called the Frequency Penalty, also known as the Echo Reducer. Its main purpose is to prevent repetitive responses from the AI, so it doesn’t sound like a broken record.

Let me give you a couple of examples to make it crystal clear. If you set the Frequency Penalty to a low setting, you might experience repeated phrases like, “I love pizza. Pizza is great. Did I mention pizza?” Now, I don’t know about you, but hearing the same thing over and over again can get a little tiresome.



But fear not! With a high setting on the Echo Reducer, the AI gets more creative with its language. Instead of the same old repetitive phrases, it starts diversifying its response. For instance, it might say something like, “I love pizza for its gooey cheese, tangy sauce, and crispy crust. It’s a culinary delight.” Now, isn’t that a refreshing change?

So, the Frequency Penalty setting is all about making sure the AI’s responses are varied and don’t become monotonous. It’s like giving the AI a little nudge to keep things interesting and keep the conversation flowing smoothly.

Today, I want to talk about a fascinating tool called the Logit Bias: The Preference Tuner. This tool has the power to nudge AI towards or away from certain words. It’s kind of like gently guiding the AI’s choices, steering it in a particular direction.

Let’s dive into some examples to understand how this works. Imagine we want to nudge the AI away from the word ‘pizza’. In this case, the AI might start focusing on other aspects, like saying, “I enjoy Italian food, especially pasta and gelato.” By de-emphasizing ‘pizza’, the AI’s choices will lean away from this particular word.

On the other hand, if we want to nudge the AI towards the word ‘pizza’, we can use the Logit Bias tool to emphasize it. The AI might then say something like, “Italian cuisine brings to mind the delectable pizza, a feast of flavors in every slice.” By amplifying ‘pizza’, the AI’s choices will emphasize this word more frequently.

The Logit Bias: The Preference Tuner is a remarkable tool that allows us to fine-tune the AI’s language generation by influencing its bias towards or away from specific words. It opens up exciting possibilities for tailoring the AI’s responses to better suit our needs and preferences.

The Presence Penalty, also known as the Topic Shifter, is a feature that helps the AI transition between subjects more smoothly. It prevents the AI from fixating on a single topic for too long, making the conversation more dynamic and engaging.

Let me give you some examples to illustrate how it works. On a low setting, the AI might stick to one idea, like saying, “I enjoy sunny days. Sunny days are pleasant.” In this case, the AI focuses on the same topic without much variation.

However, on a high setting, the AI becomes more versatile in shifting topics. For instance, it could say something like, “Sunny days are wonderful, but I also appreciate the serenity of rainy evenings and the beauty of a snowy landscape.” Here, the AI smoothly transitions from sunny days to rainy evenings and snowy landscapes, providing a diverse range of ideas.

By implementing the Presence Penalty, the AI is encouraged to explore different subjects, ensuring a more interesting and varied conversation. It avoids repetitive patterns and keeps the dialogue fresh and engaging.

So, whether you prefer the AI to stick with one subject or shift smoothly between topics, the Presence Penalty feature gives you control over the flow of conversation, making it more enjoyable and natural.

Today, let’s talk about temperature – not the kind you feel outside, but the kind that affects the creativity of AI responses. Imagine a dial that adjusts how predictable or creative those responses are. We call it the Creativity Dial.

When the dial is set to low temperature, you can expect straightforward answers from the AI. It would respond with something like, “Cats are popular pets known for their independence.” These answers are informative and to the point, just like a textbook.

On the other hand, when the dial is set to high temperature, get ready for some whimsical and imaginative responses. The AI might come up with something like, “Cats, those mysterious creatures, may just be plotting a cute but world-dominating scheme.” These responses can be surprising and even amusing.

So, whether you prefer practical and direct answers that stick to the facts, or you enjoy a touch of imagination and creativity in the AI’s responses, the Creativity Dial allows you to adjust the temperature accordingly.

Give it a spin and see how your AI companion surprises you with its different temperaments.

Today, I want to talk about a fascinating feature called “Top_p (Nucleus Sampling): The Imagination Spectrum” in GPT-4. This feature controls the uniqueness and unconventionality of the AI’s suggestions. Let me explain.

#ad

When the setting is on low, you can expect more conventional ideas. For example, it might suggest that vacations are perfect for unwinding and relaxation. Nothing too out of the ordinary here.

But if you crank up the setting to high, get ready for a wild ride! GPT-4 will amaze you with its creative and unique suggestions. It might propose vacation ideas like bungee jumping in New Zealand or attending a silent meditation retreat in the Himalayas. Imagine the possibilities!

By adjusting these settings, you can truly tailor GPT-4 to better suit your needs. Whether you’re seeking straightforward information or craving diverse and imaginative insights, GPT-4 has got you covered.

Remember, don’t hesitate to experiment with these settings. Try different combinations to find the perfect balance for your specific use case. The more you explore, the more you’ll uncover the full potential of GPT-4.

So go ahead and dive into the world of GPT-4. We hope you have an amazing journey discovering all the incredible possibilities it has to offer. Happy exploring!

Are you ready to dive into the fascinating world of artificial intelligence? Well, I’ve got just the thing for you! It’s an incredible book called “AI Unraveled: Demystifying Frequently Asked Questions on Artificial Intelligence.” Trust me, this book is an absolute gem!

Now, you might be wondering where you can get your hands on this treasure trove of knowledge. Look no further, my friend. You can find “AI Unraveled” at popular online platforms like Etsy, Shopify, Apple, Google, and of course, our old faithful, Amazon.

This book is a must-have for anyone eager to expand their understanding of AI. It takes those complicated concepts and breaks them down into easily digestible chunks. No more scratching your head in confusion or getting lost in a sea of technical terms. With “AI Unraveled,” you’ll gain a clear and concise understanding of artificial intelligence.

So, if you’re ready to embark on this incredible journey of unraveling the mysteries of AI, go ahead and grab your copy of “AI Unraveled” today. Trust me, you won’t regret it!

In this episode, we explored optimizing AI interactions by reducing repetition, steering conversations, adjusting creativity, and diving into specific techniques such as the frequency penalty, logit bias, presence penalty, temperature, and top_p (Nucleus Sampling) – all while also recommending the book “AI Unraveled” for further exploration of artificial intelligence. Join us next time on AI Unraveled as we continue to demystify frequently asked questions on artificial intelligence and bring you the latest trends in AI, including ChatGPT advancements and the exciting collaboration between Google Brain and DeepMind. Stay informed, stay curious, and don’t forget to subscribe for more!

  • Possible scenarios in era of Superhuman Generative AI
    by /u/IntrepidRestaurant88 (Artificial Intelligence Gateway) on February 28, 2024 at 6:07 pm

    Token uniqueness and creativity tax Once trained, large language models use a type of tweaking called rlhf to write in a certain desired style. There are two methods here. orm and prm. orm rewards the model only on the output, while prm rewards the entire process. While prm maintains consistency and accuracy at the expense of creativity, orm is the opposite, which means a tax on creativity. In the future, a Gpt-5 level model might automatically restrict its creativity before outputting, i.e. token uniqueness, to avoid unintended consequences and give a generic, average answer without being boring enough. Economy of time, age of distinction and similarity of content When generative AI becomes superhuman in every aspect in the future, a number of scenarios may occur. You may have heard about the attention economy, your attention is analyzed according to various parameters about a product and how much you pay attention to it, and the algorithm uses your data to optimize it to make more profit from you or shares it with content producers. As of next year, artificial intelligence-generated content is expected to constitute the entire internet. Although some are right in saying that the content produced has already surpassed human consumption, what I mean is the scenario where the production of the content that attracts people's attention and demand is faster than its consumption per unit time. When this happens, we enter the era of discernment rather than attention. The difference is that, beyond automatic production, AI receives automatic feedback and distinguishes the content to best suit the demand. While attention is now the product, attention time spent on content becomes so valuable that it can finance itself, corresponding to a positive real return. While attention is the product, attention time will function as a kind of currency. Because the time when attention is devoted to content has become a scarce resource. Finally, content similarity is always examined in the context of copyright. one retired actor even sold the rights to his likeness. But once the superhuman diversity/quality curve is reached, it is plausible that the situation will reverse. That is, generative AI now sets the norm. Human content counterparts will increasingly try to emulate productive AI content in niches that suit their content profiles in order to license their content and make this license valuable, that is, to make money from it. Now algorithmic artificial intelligence creates preference profiles based on similarities in consumer preferences. but in this scenario it must now classify preference profiles according to how different they are from each other, because overall quality can now be scaled in favor of diversity rather than at its expense. submitted by /u/IntrepidRestaurant88 [link] [comments]

  • Outfit Anyone made by HumanAIGC Alibaba Research Group
    by /u/poopsmith38 (Artificial Intelligence) on February 28, 2024 at 5:43 pm

    submitted by /u/poopsmith38 [link] [comments]

  • Cat walking towards camera
    by /u/235iguy (Artificial Intelligence Gateway) on February 28, 2024 at 5:13 pm

    I seen a video, can't remember where, of a AI cat walking down toward the camera through some shrubbery. I hope you know the one, it looked quite real. How was this made? Is it a program I can download for PC? How long does the program take to render this? Is it instant or does it take hours/days. (total AI noob, sorry) Thanks. submitted by /u/235iguy [link] [comments]

  • Just to confirm. Every author (ones at Google) of the pivotal paper, "Attention is all you Need", have quit Google. That's kind of astonishing. Just trying to confirm.
    by /u/ejpusa (Artificial Intelligence Gateway) on February 28, 2024 at 5:10 pm

    Saw a post about Google and AI. People seem to be heading elsewhere. The MBAa came in and laid down the law. "We make our rent with Ads" not selling AI. Kind of a corporate mess. Stock is still crashing. submitted by /u/ejpusa [link] [comments]

  • I have a weird habit for trying new llms
    by /u/Pure-Gift3969 (Artificial Intelligence) on February 28, 2024 at 5:04 pm

    I don't know I am the really weird person, for no reason whenever I try a llm modal locally, first thing I do is to make the fuking hrniest character possible to make. Then just ask it random questions, like from my academics, or any other things not related to prn/nsfw/fuking etc. Am I really the only one weird? submitted by /u/Pure-Gift3969 [link] [comments]

  • I have a weird habit for trying new llms
    by /u/Pure-Gift3969 (Artificial Intelligence Gateway) on February 28, 2024 at 5:01 pm

    I don't know I am the really weird person, for no reason whenever I try a llm modal locally, first thing I do is to make the fuking hrniest character possible to make. Then just ask it random questions, like from my academics, or any other things not related to prn/nsfw/fuking etc. Am I really the only one weird? submitted by /u/Pure-Gift3969 [link] [comments]

  • Two-minute Daily AI Update (Date: 2/28/2024): News from NVIDIA, GitHub, Slack, Pika, Google, Intel, Writer, and more
    by /u/RohitAkki (Artificial Intelligence Gateway) on February 28, 2024 at 4:56 pm

    Continuing with the exercise of sharing an easily digestible and smaller version of the main updates of the day in the world of AI. NVIDIA's Nemotron-4 outperforms larger models in multilingual AI - NVIDIA introduced Nemotron-4 15B, a 15 billion parameter multilingual language model trained on 8 trillion text tokens. It shows strong performance in English, multilingual, and coding evaluations. In 4 out of 7 benchmark areas, Nemotron-4 15B outperforms other leading open models, particularly in multilingual capabilities where it exceeds even specialized models over 4x its size. GitHub launches Copilot Enterprise for customized AI coding - GitHub launched Copilot Enterprise, an AI coding assistant for businesses. It is customized to generate suggestions aligned with internal codebases and best practices across the software lifecycle. GitHub calls it an "AI transformation" for enterprises and invests in responsible AI practices. Slack study shows AI frees up 41% of time spent on low-value work - Slack's latest workforce survey shows a 24% jump in AI tool usage at work over the past quarter. 80% of users are already seeing productivity gains from AI. However, under half of companies have guidelines around AI adoption. The research also found knowledge workers spend 41% of time on low-value tasks. This highlights an opportunity for AI automation to free up focus toward more meaningful and strategic work. Pika launches new lip-sync feature for AI videos - Video startup Pika announced a new Lip Sync feature powered by ElevenLabs. Pro users can add realistic dialogue with animated mouths to AI-generated videos. Although currently limited, Pika's capabilities offer customization of the speech style, text, or uploaded audio tracks, escalating competitiveness in the AI synthetic media space. Google pays publishers to test an unreleased GenAI tool - Google is privately paying a group of publishers to test a GenAI tool. They need to summarize three articles daily based on indexed external sources in exchange for a five-figure annual fee. Google says this will help under-resourced news outlets, but experts say it could negatively affect original publishers and undermine Google's news initiative. Intel and Microsoft team up to bring 100M AI PCs by 2025 - By collaborating with Microsoft, Intel aims to supply 100 million AI-powered PCs by 2025 and ramp up enterprise demand for efficiency gains. Despite Apple and Qualcomm's push for Arm-based designs, Intel hopes to maintain its 76% laptop chip market share following post-COVID inventory corrections. Writer’s Palmyra-Vision summarizes charts, scribbles into text - AI writing startup Writer announced a new capability of its Palmyra model called Palmyra-Vision. This model can generate text summaries from images, including charts, graphs, and handwritten notes. It can automate e-commerce merchandise descriptions, graph analysis, and compliance checking while recommending human-in-the-loop for accuracy. Apple cancels its decade-long electric car project - Apple is canceling its decade-long electric vehicle project after spending over $10 billion. There were nearly 2,000 employees working on the effort known internally as Titan. After Apple announces the cancellation of its ambitious electric car project, some staff from the discontinued car team will shift to other teams such as GenAI. More detailed breakdown of these news and innovations in the daily newsletter. submitted by /u/RohitAkki [link] [comments]

  • When everything online is AI generated...
    by /u/theferalturtle (Artificial Intelligence) on February 28, 2024 at 4:38 pm

    Does there come a point where we all head back offline to newspapers and books and local art shows? I already don't trust anything I see or read here or on Twitter or anywhere else. submitted by /u/theferalturtle [link] [comments]

  • I cannot tell for the life of me whether this Amex ad is AI or not. Her fingers just look wrong. What do you guys think?
    by /u/Chiltato (Artificial Intelligence) on February 28, 2024 at 4:17 pm

    submitted by /u/Chiltato [link] [comments]

  • Bird song and other natural sound with ai?
    by /u/Jubileum2020 (Artificial Intelligence Gateway) on February 28, 2024 at 3:58 pm

    Hello! I'm looking for an AI solution that can generate nature sounds, primarily bird chirping and evening insect noises, ideally available through a paid service. Are there any AI systems like this known to you? So, it's very important that I don't need a bird identifiing system, I've found that a hundred times 😀 I'm not just looking for individual bird sounds, but rather, like how a person generates an AI music piece, I want to create a few minutes of bird noises. submitted by /u/Jubileum2020 [link] [comments]

Pass the 2023 AWS Cloud Practitioner CCP CLF-C02 Certification with flying colors Ace the 2023 AWS Solutions Architect Associate SAA-C03 Exam with Confidence Pass the 2023 AWS Certified Machine Learning Specialty MLS-C01 Exam with Flying Colors

List of Freely available programming books - What is the single most influential book every Programmers should read



#BlackOwned #BlackEntrepreneurs #BlackBuniness #AWSCertified #AWSCloudPractitioner #AWSCertification #AWSCLFC02 #CloudComputing #AWSStudyGuide #AWSTraining #AWSCareer #AWSExamPrep #AWSCommunity #AWSEducation #AWSBasics #AWSCertified #AWSMachineLearning #AWSCertification #AWSSpecialty #MachineLearning #AWSStudyGuide #CloudComputing #DataScience #AWSCertified #AWSSolutionsArchitect #AWSArchitectAssociate #AWSCertification #AWSStudyGuide #CloudComputing #AWSArchitecture #AWSTraining #AWSCareer #AWSExamPrep #AWSCommunity #AWSEducation #AzureFundamentals #AZ900 #MicrosoftAzure #ITCertification #CertificationPrep #StudyMaterials #TechLearning #MicrosoftCertified #AzureCertification #TechBooks

AI Unraveled: Demystifying Frequently Asked Questions on Artificial Intelligence
AI Unraveled: AI, ChatGPT, Google Bard, Machine Learning, Data Science, Quiz

Top 1000 Canada Quiz and trivia: CANADA CITIZENSHIP TEST- HISTORY - GEOGRAPHY - GOVERNMENT- CULTURE - PEOPLE - LANGUAGES - TRAVEL - WILDLIFE - HOCKEY - TOURISM - SCENERIES - ARTS - DATA VISUALIZATION
zCanadian Quiz and Trivia, Canadian History, Citizenship Test, Geography, Wildlife, Secenries, Banff, Tourism

Top 1000 Africa Quiz and trivia: HISTORY - GEOGRAPHY - WILDLIFE - CULTURE - PEOPLE - LANGUAGES - TRAVEL - TOURISM - SCENERIES - ARTS - DATA VISUALIZATION
Africa Quiz, Africa Trivia, Quiz, African History, Geography, Wildlife, Culture

Exploring the Pros and Cons of Visiting All Provinces and Territories in Canada.
Exploring the Pros and Cons of Visiting All Provinces and Territories in Canada

Exploring the Advantages and Disadvantages of Visiting All 50 States in the USA
Exploring the Advantages and Disadvantages of Visiting All 50 States in the USA


    Feed has no items.

    Feed has no items.

Reddit Science This community is a place to share and discuss new scientific research. Read about the latest advances in astronomy, biology, medicine, physics, social science, and more. Find and submit new publications and popular science coverage of current research.

Health Health, a science-based community to discuss health news and the coronavirus (COVID-19) pandemic

Today I Learned (TIL) You learn something new every day; what did you learn today? Submit interesting and specific facts about something that you just found out here.

error: Content is protected !!